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in Multiple Regression
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Abstract Linear models are particularly vulnerable to influential observations which dispropor-
tionately affect the model’s parameter estimates. Multiple statistics and numerous cut-off values
have been proposed to detect highly influential observations including Cook’s Distance (CD), Stan-
dardized Difference of Fits (DFFITS) and Standardized Difference of Beta (DFBETAS). This paper
reports on a Monte Carlo simulation study that assesses the effectiveness of these methods and
recommended cut-off values under various conditions, including different sample sizes, numbers
of predictors, strengths of variable associations, and non-sequential versus sequential analysis ap-
proaches within a multiple linear regression framework. The findings suggest that the proportion
of observations identified as highly influential varies significantly based on the chosen diagnostic
method and the thresholds used for detection. Consequently, researchers should consider the impli-
cations of their methodological choices and the thresholds they apply when identifying influential
data points.
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Introduction

When analyzing data using linear models, it is common for
particular observations to be inconsistent with the others
in the data (Barnett & Lewis, 1984). Data points which are
inconsistent with other observations in the dataset are re-
ferred to as outliers. Outliers often affect the results of sta-
tistical analyses in a substantial way. Therefore, it is valu-
able to identify potential outliers and assess their impact on
the results and conclusions of a study. In some instances, it
is easy to identify outliers via a simple graph (e.g., scatter
plot), whereas in others, outliers cannot be detected as eas-
ily but nevertheless have an important effect on the analy-
sis results.

There are three primary ways to quantify outlying
cases: leverage, discrepancy, and influence. A high-
leverage data point is one with “extreme” values on the
predictor variable(s) (Faraway, 2004; Wei et al., 1998). For
instance, an individual could have an extreme value on
one variable (e.g., income) or a combination of variables
(e.g., income and depression), and in both situations, these

observations would have high leverage. A high discrep-
ancy data point has an unusual outcome value given its
predictor value (Faraway, 2004). For example, when utiliz-
ing the least squares method to plot a regression line on a
set of observations, an observation far away from the line
of best fit can be identified as having a high discrepancy.
Although leverage and discrepancy are crucial considera-
tions in outlier detection, this paper focuses on data points
considered “influential.” Influence is a function of discrep-
ancy and leverage. A highly influential case has an unusu-
ally large effect on the estimated parameters of the linear
model (e.g., intercept, slope), whereby removing this case
will substantially change the coefficient estimates (Salkind,
2010). The identification and appropriate treatment of in-
fluential cases are vital because a highly influential case
may alter the parameter estimates (and significance tests)
such that the coefficients do not adequately represent the
relationships in question for the bulk of the data.

That said, researchers should not instinctively remove
data deemed influential. Instead, a researcher should
flag this value for further investigation. Anscombe (1960)
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places outliers into two distinct categories: 1) observations
arising from errors in the data (e.g., data entry errors, such
as reporting in centimeters instead of inches or misplacing
a decimal point); and 2) observations arising from the in-
herent variability of the data. Identifying towhich category
a highly influential observation belongs can sometimes be
straightforward and other times extremely complicated.
Obviously, errors in the dataset need to be addressed, but
what to do about genuine cases that strongly influence the
results is often unclear, with no consensus in the literature
(Dhakal, 2017). These decisions are often highly subjective
and context-dependent, but still might have strong impli-
cations. The subsequent section provides an overview of
three popular model-based methods for detecting influen-
tial cases: Cook’s distance (CD), Difference in Fits (DFFITS),
and Difference in Betas (DFBETAS).

Commonly Employed Methods for Detecting Influential
Cases

Using figures is an initial step that one should takewhen ap-
proaching outlier analysis (Felt et al., 2017; Hebbali, 2020;
Tukey, 1977). For example, a scatter plot can be a vital tool
to detect outliers when there is a single outcome and a sin-
gle predictor variable. Including a regression line with a
scatter plot can also greatly assist researchers in visually
identifying influential cases. Researchers are encouraged
to utilize visualization strategies combined with outlier de-
tection statistics to better understand the influential data
points. Next, there are various statistical techniques that
researchers can use to identify highly influential cases.

Cook’s Distance (CD)

CD is one of themost commonmethods used to locate influ-
ential observations in a dataset (Zhu et al., 2012). Caseswith
higher leverage and higher discrepancy have increased CD
scores (Cook, 1977). CD reflects the change in the fitted
response (predicted) values when the ith data point is re-
moved. CD is calculated as:

CDi =

∑N
j=1

(
Ŷj − Ŷj(i)

)
(p+ 1) MSE

where Ŷj is the predicted response value for case j, Ŷj(i)is
the predicted response value for case j, where the fit does
not include observation i, p is the number of predictors
(plus 1 to account for the intercept term), N is the sam-
ple size, andMSE is the model mean squared error based
on all observations. Note that the numerator assesses the
difference in the predicted response when the ith case is
included versus not included in the data. The denomina-
tor accounts for the expected variability between observed
and predicted response values.

CD is not a statistical significance test that researchers

should solely use to accept or reject particular observations
in a given dataset (Cook, 2011); instead, it is best used to
indicate the extent to which each observation is influen-
tial or outlying. Deciding on an appropriate cut-off value
for identifying when an observation is highly influential is
thus an imperative, but often complicated exercise. Cook
(1977) stated that any observation with a CD value greater
than 1 should be considered an influential case when de-
ciding upon a particular cut-off value for CD. A cut-off of
1 is a popular cut-off value for interpreting CD among re-
searchers and textbook authors (e.g., Cohen et al., 2014;
Tabachnick & Fidell, 2019). However, this approachmay be
considered too conservative (i.e., not able to detect highly
influential outliers) as it rarely “catches” any cases due to
its high threshold (McDonald, 2002). For this reason, re-
searchers who want a more conservative approach some-
times use 0.5 as a cut-off point, with CD values larger than
0.5 considered highly influential (Cook & Weisberg, 1982).
Another popular cut-off for CD is 4/(N−p−1) (Cook, 1977).
It is obvious that with even a small sample size, this cut-off
is much smaller than CD = 1 or CD = 0.5. For example, with
N = 20 and two predictor variables, 4/(N − p − 1) =
4/(20− 2− 1) = 0.24.

Standardized Difference in Fits (DFFITS)

An alternative approach to identifying influential cases is
DFFITS. CD and DFFITS follow similar logic: delete one ob-
servation at a time, then refit the regressionmodel onN−1
observations and explore the difference in the model pa-
rameters. The equation for DFFITS is as follows:

DFFITTSi =
Ŷi − Ŷi(i)

σ(i)

√
hii

The numerator describes the difference in the pre-
dicted values for Yi with data point i included and with-
out data point i included in the regression model. σ(i) rep-
resents the standard error estimated without the ith point
included and hii is the leverage value for the point. DFFIT
is an unstandardized version of DFFITS. The difference be-
tween these two tests is that DFFIT only computes the nu-
merator values of DFFITS, excluding the denominator. Nu-
merous cut-offs have been proposed to identify cases that
are influential when using DFFITS. The initial cut-off em-

ployed by Welsch and Kuh (1977) was 2
√

(p+1)

(N−p−1) , whereas
Belsley et al. (1980) proposed cut-offs of 2 and 2

√
p/N . The

cut-offs 2 and 2
√
p/N are used in the current study.

Standardized Difference of Betas (DFBETAS)

Following the same intuitive logic as the CD and DF-
FITS procedures, DFBETAS is an influential case detection
method that investigates the standardized difference in re-
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Table 1 Overview of Outlier Cut-Off Values

Influential Case Detection Method Cut-Off
CD

Cook (1977) 1
Cook and Weisberg (1982) 0.5
Cook (1977) 4/(N − p− 1)

DFFITS
Belsley et al. (1980) 2

Belsley et al. (1980) 2
√
p/N

DFBETAS
Belsley et al. (1980) 2

Belsley et al. (1980) 2/
√
N

Bollen and Jackman (1985) 1

gression coefficients when a particular (ith) case is present,
versus not present, in the dataset. The difference between
CD or DFFITS and DFBETAS is that DFBETAS assesses how
each coefficient in themodel changeswhen deleting the ith
observation, rather than how the predicted values change
(as with CD and DFFITS). DFBETAS can be calculated as:

DFBETASij =
b̂k − b̂(k)i

s(i)
√

(X ′X)jj

where b̂k is the kth coefficient estimate from the regres-
sion model calculated using all the data, b̂(k)i is the kth
coefficient estimate from the regression model calculated
without the ith observation, and (X

′
X )jj is the (j, j)th

(diagonal) element of (X
′
X)−1 for all observations (where

(X
′
X)−1 is the inverse of the variance-covariance matrix

of the predictor variables). As per the previous numeric
cut-off strategies, there are various thresholds that one can
utilize to determine if a case should be deemed influential.
Belsley et al. (1980) proposed a general cut off of 2 and a
sample size-adjusted cut-off of 2/

√
N . Values that exceed

this threshold are to be considered influential. Bollen and
Jackman (1985) proposed an alternative cut-off of DFBETAS
value at 1.

Table 1 presents an overview of the numeric cut-offs
proposed for each of the methods for quantifying high in-
fluence.

Sequential vs. Non-Sequential

When considering the various methods and cut-off val-
ues available to researchers, two main approaches are
available to detect influential cases: sequential and non-
sequential. For the sake of this discussion, we will assume
that the researcher has decided to remove cases deemed
influential; however, this does not need to be the de-
fault. Non-sequential entails researchers removing all val-
ues that exceed a particular cut-off value in one step. The

sequential strategy (Aggarwal & Sathe, 2017) consists of re-
searchers flagging themost extreme value that exceeds the
cut-off value, removing it, and, if necessary, identifying fur-
ther cases by rerunning the model using the updated data
and cut-off value. This process is repeated iteratively until
no other values exceed the selected cut-off. Since outlying
cases often inflate the standard errors ofmodels (and influ-
ential case detectionmethods), sequential methods ‘re-run’
the models and influential case detection methods after re-
moving the most influential case. We are unaware of any
previous literature exploring the advantages or disadvan-
tages of one approach over the other.

Current Study

Despite their accessibility in the literature and availabil-
ity in statistical software, recommendations regarding im-
plementing the CD, DFFITS, and DFBETAS influential case
detection methods are limited and sometimes confusing,
with no details regarding the consequences of choosing one
method over another. Furthermore, there is little research
comparing the methods or the cut-offs proposed for each
method. Given the impact that influential observations can
have on the results of linear model analyses, we sought to
compare available strategies. This study uses aMonte Carlo
simulation approach to compare different outlier detection
strategies and cut-offs within a multiple linear regression
framework. The current study compares the procedures
(along with the associated cut-offs) in terms of the propor-
tion of influential cases identified when the data are sam-
pled fromamultivariate normal distribution. Given the na-
ture of the study, there are no formal hypotheses regarding
the effects; instead, our interest is in highlighting relevant
differences among the procedures and cut-offs in terms of
the proportion of cases identified as highly influential. To
the best of our knowledge, this is the first study to compare
the CD, DFFITS and DFBETAS procedures, using all of the
recommended cut-offs outlined in Table 1, with respect to
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Table 2 Summary of Simulation Parameters and Parameter Values

Parameter Value
N 25, 50, 100, 250, 500, 1000
COV Equal: COV(VAR1, VAR2) = COV(VAR1, VAR3) = COV(VAR2, VAR3) = 0.1, 0.3, or 0.5;

Unequal: COV(VAR1, VAR2) = 0.1, COV(VAR1, VAR3) = 0.3, COV(VAR2, VAR3) = 0.5
es Equal: β1 = β2 = β3 = · · · = βp = 0.1, 0.3, or 0.5;

Unequal: β1 = 0.1, β2 = 0.3, β3 = 0.5, β4 = 0.1, β5 = 0.3, β6 = 0.5
p 1, 3, 6
s/ns Sequential, Non-Sequential

Note. Sample size (N ), covariance between predictor variables (COV ), effect size of regression coefficients between pre-
dictor and outcome variables (es), note, unequal conditions are only for 6 predictor models, number of predictor variables
(p), sequential and non-sequential outlier detectionmethod (s/ns). Note that the covariance between predictors in the table
only shows the conditions with three predictors. However, with six predictors, the pattern of association follows the same
logic only with 15 unique variable pairings.

identifying influential cases in amultiple regression frame-
work.

Monte Carlo Simulation Study

A Monte Carlo study was used to compare the proportion
of influential cases identified using three influential case
methods, CD, DFFITS andDFBETAS. In addition, the cut-offs
were also varied for each method (See Table 1). The study
design is a 3 (number of predictors in the model) × 6 (to-
tal sample size) × 5 (coefficient effect sizes) × 6 (relation-
ship between predictor variables) × 2 (sequential vs. non-
sequential), and removing any redundant conditions (e.g.,
0.1, 0.3, and 0.5 between-predictor correlations with a sin-
gle predictor), resulting in a total of 210 unique conditions.
The simulation parameters are summarized in Table 2.

Procedure

Multivariate normal data was simulated using the
SimDesign package (Chalmers & Adkins, 2020) in R (R
Core Team, 2021). The multiple regression model was con-
ducted via the lm function within the stats package in R.
Once the model was run, each of the influential case meth-
ods was employed (i.e., CD, DFFITS, DFBETAS) along with
each of their accompanying cut-off values to identify any
influential cases. CD, DFFITS, andDFBETASwere computed
using the cooks.distance, DFFITS, and DFBETAS
functions, respectively (all within the stats package in R).
For each condition, 5000 simulations were conducted. The
proportion of outliers detected for each method, and the
accompanying cut-off value, was determined by taking the
number of cases deemed as highly influential and dividing
that number byN .

Simulation Conditions.

The conditions used within the Monte Carlo study are pre-
sented in Table 2.

Sample Size. The selected sample-size values were cho-
sen to reflect typical sample sizes employed in psychology
research. The selected sample sizes included in the simula-
tion areN = 25, 50, 100, 250, 500, and1000.
Number of Predictors. The number of predictors used in
each model was p = 1, 3, and 6. These predictors were se-
lected to represent typical designs used in social science re-
search (e.g., Tabachnick & Fidell, 2019; Yarkoni & Westfall,
2017).
Relationship Between Predictors. The relationship be-
tween predictors (covariance) in the model varied across
numerous conditions. In particular, the covariance among
predictors was manipulated to assess the degree to which
relationships among predictors affect the proportion of
outliers. The population covariances among predictors
were set at 0.1, 0.3, 0.5. Each pair of predictors either had
the same relationship (e.g., in the 3-predictors conditions,
the relationship was either [0.1, 0.1, 0.1], [0.3, 0.3, 0.3], or
[0.5, 0.5, 0.5]) or “heterogeneous” correlations with vary-
ing or “mixed” magnitudes (e.g., COV(VAR1, VAR2) = 0.1,
COV(VAR1, VAR3) = 0.3, COV(VAR2, VAR3) = 0.5, etc.).
Effect Size of Regression Coefficients. The effect size of
the regression coefficients between the predictor and out-
come variable varied across conditions. More specifically,
various standardized regression coefficients were utilized
to examine the unique relationships among each predic-
tor and the outcome variable. Effect size regression coeffi-
cients were set at 0.1, 0.3, 0.5. In some instances, all regres-
sion coefficients had the same effect size value (i.e., [0.1,
0.1, 0.1], [0.3, 0.3, 0.3], and [0.5, 0.5, 0.5]), whereas others
included a “mix” of effect sizes in the three (i.e., [0.1, 0.3,
0.5]) and six predictormodel (i.e., [0.1, 0.3, 0.5, 0.1, 0.3, 0.5]).
These values reflect the partial relationship between pre-
dictor variables and the outcome.
Approach: Sequential and Non-Sequential. The in-
fluential case method (and associated cut-off value) was
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Figure 1 Simulation Results: Total Proportion of Influential Cases Identified

conducted using either a sequential or non-sequential ap-
proach. As described in detail above, the sequential ap-
proach removes the most influential case (that exceeds the
cut-off), and then repeats the procedure with the new data.
This procedure continues until no case exceeds the cut-off.
The non-sequential approach removes all cases that exceed
the cut-off all at once (with no further influential case de-
tection).

Results

Across all manipulated conditions in the simulation study,
the magnitude of the effects and covariance (i.e, the
strength of the relationship between the predictors and the
outcome, or the strength of the relationships among the
predictors themselves) had very little influence on the pro-
portion of identified influential cases as indicated by the
arrow and red square.

Therefore, to avoid redundancy, both Figure 1 and Fig-
ure 2 illustrate themarginal results, collapsing across all ef-
fect sizes and covariances.“ The results are summarized in
Figure 1. Additionally, please refer to Figure 2, which high-
lights the smaller proportions (< .30) of outlier detection.
The tabulated raw results and simulation code are avail-
able on OSF: osf.io/ehvym/.

CD

CD cut-offs can be separated into two groups: non-sample-
size-dependent cut-offs (1 and 0.5) and a sample-size-
dependent cut-off of 4/(N − p − 1). A non-sequential ap-
proach with a cut-off of 1 and 0.5 identified less than 1% of
cases as influential, while a cut-off of 4/(N − p − 1) iden-
tified approximately 5%-7% of cases as influential. When
taking a sequential approach, non-sample-size-dependent
cut-offs still identified less than 1% of cases as influential,
while a cut-off of 4/(N − p − 1) identified approximately
12%-15% of cases as influential. Across all conditions, CD
was relatively consistent with respect to the proportion of
influential cases observed across different sample sizes,
number of predictors, and effect sizes.

DFFITS

Using a non-sequential approach, a cut-off of 2 identified
less than 1% of cases as influential across all conditions.
The 2

√
p/N cut-off identified approximately 7%-17% of

cases as influential across all conditions, with rates lower
as N increased. Alternatively, when employing a sequen-
tial approach, a cut-off of 2 identified less than 1% of cases
as influential, while a cut-off of 2

√
p/N identified 20%-

90% of cases across all conditions. Within a simple linear
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Figure 2 Simulation Results: Proportion of Influential Cases with 30% or Fewer Identified. These results replicate the
same findings as Figure 1, with an emphasis on proportions of outliers identified less than 30% of the time.

regression framework (i.e., one predictor), for N > 100,
the proportion of influential cases identified increasedwith
N . In a three and six-predictor model, the proportion of in-
fluential cases observed rapidly decreased asN increased.

DFBETAS

Starting with the non-sequential approach, DFBETAS with
non-sample-size dependent cut-offs (1, 2) were conserva-
tive, identifying less than 1% of cases as influential, while
DFBETAS with a sample-size-dependent cut-off of 2

√
N

identified 12%-30% of cases as influential. When employ-
ing a sequential approach, non-sample-size-dependent cut-
offs identified less than 1% of cases as influential, while a
cut-off of 2

√
N identified approximately 37%-100%of cases

as influential across all conditions. As demonstrated by the
limited variability in the proportion of observed influential
cases, sequential and nonsequential approaches with non-
sample size-dependent cut-offs remained relatively unaf-
fected by simulation conditions (e.g., sample size, number
of predictors). Whendiscussing a sequential approachwith
a cut-off of 2

√
N , there was a substantially greater pro-

portion of observed influential cases compared to the non-
sequential method with a wide interval of observed cases.
For a cut-off of 2

√
N , the rates also increased with the

number of predictors. As an example, approximately 38%
of cases were identified as influential with one predictor,
compared to approximately 99% of cases being identified
as influential in a six-predictor model.

Monte Carlo Simulation Summary

When using DFBETAS or DFFITS with a sequential ap-
proach and a sample-size- dependent cut-off, there was a
large amount of variability in the proportion of outliers ob-
served across simulation conditions, with rates approach-
ing 100% of cases being deemed influential. CD was rel-
atively robust across simulation conditions (i.e., the most
consistent in detecting outliers regardless of condition)
in terms of the mean proportion of identified influential
cases, with rates elevated, as expected, in sequential con-
ditions. When comparing CD, DFFITS and DFBETAS, non-
sample-size-dependent cut-offs always identified less than
2% of cases as influential in the non-sequential cases, with
slightly higher rates in the sequential conditions.

Simulating Outlier-Contaminated Data

Given that the CD statistic with a 4/(N − p− 1) cut-off and
non-sequential approach was consistent across the num-
ber of predictors and sample size, detecting, on average,
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Figure 3 Contaminated Data Point Example. The red dot represents a contaminated observation of (2.5, - 2.5) to a posi-
tive, moderate bivariate association between two normally distributed variables, each with a mean of 0 and a standard
deviation of 1.

5% of cases as outliers, we find this approach to be the
best of all options investigated. Thus, an additional simula-
tion was performed to understand how well this method-
threshold combination correctly detects data artificially
contaminatedwith outliers. Weaddedoutliers into the data
by manually simulating points that were clearly inconsis-
tentwith the observations along the regression line. For ex-
ample, inserting a contaminating observation of (2.5, - 2.5)
to a positive, moderate bivariate association between two
normally distributed variables, eachwith amean of 0 and a
standard deviation of 1. Please see Figure 3 to viewa simple
example that illustrates a set of 25 observations with a sin-
gle contaminated data point. The simulation is a 2 (number
of predictors in the model; p = 1, 3)× 2 (total sample size;
N = 50, 100) × 2 (number of outliers added to the data;
outliers = 1, 3) design, resulting in a total of 8 unique condi-
tions. For each condition, 500 simulations were conducted.
In all simulation iterations, our recommended outlier de-
tection method achieved a 100% detection rate in identify-
ing outliers added to the dataset.

Discussion

Outlier detection is an important linear model diagnostic
that is commonly used by researchers prior to analyzing

and interpreting results. However, implementing influen-
tial case methods can be confusing for researchers, espe-
cially since there is little information available regarding
the implications of selecting particular methods and their
accompanying cut-off values. The current study sought to
inform researchers on how the particular influential case
method and cut-off they select can affect the proportion
of detected influential cases across various linear models,
even with “perfectly” (i.e., artificially generated using a
simulation) multivariate normal data and no anticipated
outliers. This study investigated CD, DFFITS and DFBETAS
across varying parameters and with various proposed cut-
offs to better understand the differences when identifying
influential cases in a model. Simulation results supported
the contention that there is high variability across influen-
tial case methods/cut-offs. Once researchers identify a par-
ticular influential casemethod and a preferred cut-off, they
are then faced with selecting either a sequential or nonse-
quential approach for their analysis. Given the lack of re-
sources in the literature, this study sought to examine how
each approach can affect the proportion of influential cases
observed.

When comparing the number of cases identified as in-
fluential for non-sample size dependent cut-offs (CD = .5 or
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1; DFITTS = 2; DFBETA = 1 or 2) across all methods, near
zero percent of cases were flagged as influential in most
conditions. The proportions of influential cases for non-
sample-size-dependent cut-offs were obtained under per-
fectly normal multivariate data with no outliers inserted
into the data, and hence, these methods are performing as
expected. However, even when multivariate normal data
are simulated, there is an expectation that someof the cases
will be extreme/influential.

CDwas themost consistentmethod across conditions in
the simulation, having higher rates with sequential meth-
ods and with the sample-size-dependent cut-off. On the
other hand, the rates for the sequential versions of the DF-
FITS with a cut-off of 2

√
p/N and DFBETAS with a cut-off

of 2
√
N varied substantially by sample size and the num-

ber of predictors included in the model. Even with a non-
sequential approach, the rates consistently identifiedmore
cases as influential than the sample-size-dependent cut-offs
for CD.More specifically, thesemethods consistently identi-
fiedmore than 10%of cases as influential within themodel.
This level of outliers represents a higher level thanwhatwe
would expect from distributions simulated from the multi-
variate normal distribution (Aguinis et al., 2013); as such,
we do not recommend employing these strategies to de-
tect influential cases. As expected, selecting a sequential
approach yielded a greater proportion of cases identified
as influential than a non-sequential approach. This finding
was consistent across all influential case methods/cut-offs
and simulation parameters. From a theoretical perspec-
tive, this finding is logical: as outliers are removed from
the dataset, the standard deviation of the residuals gener-
ally gets smaller as the line of best fit gets pulled toward the
other data points in the distribution. This process results in
higher influence statistics. More so, influential cases can in-
flate the standard error of linear models, implying a need
to re-run the models and re-identify influential cases after
removing the most extreme influential case. However, the
results of the current study suggest that the sequential ap-
proach generally identifies an unacceptably high number
of cases as influential.

Recommendations

To blindly remove outliers that exceed a cut-off is a prac-
tice that we neither endorse nor encourage. We advise re-
searchers to conduct a sensitivity analysis, to construct a
modelwith outliers removed and compare its performance
to that of the original model. If the model’s fit and es-
timated parameters undergo meaningful alterations after
outlier removal, researchers should investigate these influ-
ential data points further. If no meaningful alterations to
themodel occur, we recommend leaving those values in the
model. This systematic approach facilitates amore compre-

hensive evaluation of the model’s validity and sheds light
on the impact of specific cases.

Influential case statistics should be used in conjunction
with visualizations (e.g., scatter plots, residuals vs. lever-
age plots). Visualizations provide an additional tool for re-
searchers to investigate cases identified by the selected in-
fluential case method as extreme.

After taking the necessary steps needed to better under-
stand each case identified as influential, researchers may
decide to remove an outlier (if they have legitimate reasons
to do so) or simply leave the case in the model and report
the results with and without the influential case (i.e., sensi-
tivity analyses). Most importantly, transparency and justi-
fication are necessarywhen a researchermakes these deci-
sions. Informing the reader of the process taken to identify
and deal with influential cases increases the transparency
and reliability of the current study. These open science
practices are one of many ways researchers can improve
social science’s validity and reliability (Hales et al., 2018).

The results of the present Monte Carlo study inform re-
searchers regarding the consequences of their selection of
a particular influential case detection method and cut-off
with respect to the proportion of “flagged” highly influen-
tial cases. This highlights the importance of researchers’
degrees of freedom in detecting influential cases. As previ-
ously stated, we recommend that researchers use the non-
sequential CD approach with a sample size dependent cut-
off of 4/(N − p − 1). This method provided an excellent
balance between consistency (acrossN and p) and level of
conservativeness (5̃% of cases detected as influential). Fur-
ther, this approach was also able to correctly flag contam-
inating observations with 100% accuracy. That said, there
is no “right” rate of rejected cases for an outlier detection
approach/cut-off. However, some rates are clearly unac-
ceptable (e.g., > 30%). In our simulation, we expected a rea-
sonable or acceptable rate to be low but non-zero, and this
study helped identify procedures that fall into this broad
category.

Outside of the simulation study, however, deciding on
an acceptable rate of outlier detection can be a challenging
but necessary task. The decision of an acceptable rate can
vary significantly depending on the research context, ques-
tion, study design, target population, and the researcher’s
judgement. Questions that researchersmay ask themselves
in guiding their decision are whether it is reasonable that a
certain proportion (e.g., 5%) of the data is identified as out-
liers, how removing these cases (if necessary) would im-
pact the sample size and statistical power of the model,
and are there alternative statistical techniques or robust
methods that could be used tomitigate the influence of out-
liers without excluding them entirely? Because these deci-
sions are subjective and at the discretion of the research
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team, we invite researchers to consider them carefully in
advance, provide clear justifications for their choices, and
ensure transparency when reporting their results.

Limitations and Future Research

Given the nature of the current study, some limitations de-
serve notice. One limitation is that the current study was
not able to investigate all possible Monte Carlo simulation
conditions (e.g., sample size, number of predictors, cut-offs,
and relationships among variables). Therefore, it is pos-
sible that the results would not generalize to other condi-
tions. As well, we also recognize that the cut-offs employed
in this manuscript are not an exhaustive list of all the cut-
offs proposed for our influential case detection methods of
interest. As the current study sought to include the most
popular and recommended cut-offs in the literature, future
research should expand the cut-offs used in the current
study to understand how different cut-offs affect the pro-
portion of outliers identified.

The current study also did not investigate situations
in which the assumptions of linear models were violated
(e.g., nonlinearity, heteroscedasticity). Future research
may benefit from violating particular model assumptions
andby including amore diverse array of simulationparam-
eters, to see the effect of these conditions on the proportion
of cases deemed influential.

Finally, as identifying influential cases with DFBETAS
depends directly on the number of predictors in themodel,
future research is encouraged to evaluate the DFBETAS
approach with familywise error control (e.g., Bonferroni-
Holm; Holm, 1979) to see how this change affects the mean
proportion of influential cases observed.

Conclusion

This study revealed substantial heterogeneity in the var-
ious influential case methods and cut-offs used for iden-
tifying outliers in a multiple linear regression frame-
work. More specifically, this research highlights the need
for methodological and statistical awareness among re-
searchers before approaching outlier analysis. Under-
standing the variability amongmainstream influential case
methods and their associated cut-offs accentuates how de-
cisions may affect the validity and reproducibility of re-
sults. Based on the results of this study, we recommend
that researchers utilize the CD approach with a cut-off of
4/(N − p − 1) for identifying influential cases in multi-
ple regression scenarios. It is hoped that this paper will
help researchers make informed decisions regarding the
approach they select for identifying highly influential cases
in multiple regression models.
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