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Abstract Response time data have a positively skewed distribution. The challenge with this is that
a measure of central tendency and dispersion does not adequately describe a skewed distribution.
A researcher relying on only response timemean and standard deviation couldmake incorrect con-
clusions about response time. The best way to analyze response time data is with a distribution
analysis. One reason that response time distribution analyses are atypical is that at least 100 trials
are recommended per participant and condition. In the current tutorial, we demonstrate a distri-
bution analysis technique that requires as few as 40 participants with 40 trials per condition. This
technique involves geometric quantile averaging (GQA) and the quantile maximum probability esti-
mator (QMPE). Each step of the analysis is detailedwith aMATLAB script, flexibleMATLAB functions,
and experimental response time data. Our goal was to lower the barriers to entry for response time
distribution analysis so that more researchers will choose to thoroughly examine response time
data.
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Introduction

How should we analyze response time, the time from the
go signal to movement initiation?1 Traditional response
time analysis involves a measure of central tendency (e.g.,
mean or median; c.f. Miller, 1988) and a measure of dis-
persion (e.g., standard deviation or variance). This type of
analysis is appropriate for variables that have a Gaussian
(normal) distribution function. Response time data, how-
ever, almost always have a positively skewed distribution
function. For such data, the traditional analysis is better re-
placed by a distribution analysis. One potential reason that
response time distribution analyses are atypical is that at
least 100 trials are recommended for each participant and
in each condition (per cell; Lacouture & Cousineau, 2008;
Ratcliff, 1979; Van Zandt, 2000), and most studies have far
fewer trials than that. In the current tutorial, we demon-
strate a distribution analysis technique that requires fewer
trials (as few as 40 participants with 40 trials per cell). This

technique involves two steps: calculating group quantiles
by merging individual quantiles and then calculating the
group distribution by fitting the ex-Gaussian distribution
function to the group quantiles. The current best tech-
niques for these two steps are geometric quantile averag-
ing (GQA; Cousineau et al., 2016) and the quantile maxi-
mum probability estimator (QMPE; Heathcote et al., 2004),
respectively. We will return to these steps after further jus-
tification for response time distribution analysis and the
use of the ex-Gaussian distribution function.

The challengewith response time data is that ameasure
of central tendency and dispersion does not adequately de-
scribe a skewed distribution function. In the worst case,
two positively skewed distribution functions can be visibly
different and yet have identical means and standard devia-
tions. Figure 1, left, shows two visibly different distribution
functions with identical means (X̄ = 1000) and standard
deviations (s = 100.0). A researcher relying on onlymeans
and standard deviations would incorrectly conclude that

1Response time and reaction time have both been used to describe the duration of time from the go signal tomovement initiation (Luce, 1986;Welford,
1980). We decided to use response time in the current tutorial because it is the more commonly used term in the methodology of distribution analysis.
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Figure 1 Example ex-Gaussian Distribution Functions. (Left) The two ex-Gaussian distribution functions are visibly dif-
ferent and yet their means (1,000) and standard deviations (100.0) are identical. This example demonstrates the need to
analyze response time distributions and not just the means and standard deviations. The two distribution functions do
have different skew (0.71 grey line and 1.71 black line), but stable estimates of skew are impractical in most experiments
as they require hundreds of trials. (Right) Three examples of ex-Gaussian distribution functions. The solid grey line is a
typical ex-Gaussian distribution function with positive skew. The black line is an ex-Gaussian distribution function with a
τ parameter of zero, which is identical to a Gaussian (normal) distribution function. The dotted grey line is an ex-Gaussian
distribution function with a σ parameter of zero, which is identical to an exponential distribution function.

(a) (b)

response time of the two conditions is not significantly dif-
ferent. A skewed distribution function can be described by
a measure of central tendency, dispersion, and skewness.
However, there are two major issues with measurements
of skewness (Heathcote et al., 1991; Ratcliff, 1979). First, the
sampling variance associated with skewness is extremely
large. Consequently, a stable estimate of skewness requires
hundreds of trials per cell. Second, measurements of skew-
ness are sensitive to outliers even with many trials. The
best way to analyze response time data is, therefore, with
a distribution analysis (Whelan, 2008).

The first decision in a distribution analysis is choos-
ing a theoretical distribution. The Log-normal, Weibull,
and Wald distributions have occasionally been used to fit
positively skewed response time data. The most popular
choice, however, is the exponentially modified Gaussian
(ex-Gaussian) distribution function, which was popular-
ized in response time research by Hohle (1965), Ratcliff
(1978, 1979), and Luce (1986). The ex-Gaussian distribu-
tion function is derived by the combination of a Gaussian
distribution function and an exponential distribution func-
tion (in mathematical terms, it is the convolution of those
two functions). An ex-Gaussian distribution function is de-
scribed by three parameters: mu (µ), the mean of the nor-
mal component, sigma (σ), the standard deviation of the
normal component, and tau (τ ), a single value for themean
and standard deviation of the exponential component. It is
the τ parameter that defines the positive skew of the ex-

Gaussian distribution. The mean and standard deviation
of an ex-Gaussian distribution are µ+ τ and

√
σ2 + τ2, re-

spectively. These formulas demonstrate the results of com-
bining the Gaussian and exponential distributions. Three
examples of ex-Gaussian distribution functions are shown
in Figure 1, right.

The µ, σ, and τ parameters are typically used to de-
scribe the distribution of the response timedata and to then
make comparisons between conditions, which we demon-
strate in the current tutorial. An advantage of this descrip-
tive interpretation of the ex-Gaussian parameters is that
it can be applied broadly to all sorts of response time ex-
periments. One such example, using older methodology, is
Heathcote et al.’s (1991) application of the ex-Gaussian dis-
tribution function to response time in the Stroop task. The
generalizability of the descriptive approach comes with a
disadvantage; it lacks a theoretical interpretation of the ex-
Gaussian parameters. There are some studies that connect
ex-Gaussian parameters to cognitive processes (e.g., Hock-
ley, 1984; Ratcliff, 1978; Schmiedek et al., 2007), but they do
not generalize beyond the specific response time paradigm
investigated.

Regardless of whether a descriptive or theoretical in-
terpretation is used, the ex-Gaussian distribution function
must first be fit to the response time data. If you are in the
fortunate situation of having at least 100 trials per cell, then
you canfit an ex-Gaussiandistribution function to each cell.
There is a tutorial on this technique for MATLAB by Lacou-
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ture and Cousineau (2008) and for Python by Moret-Tatay
et al. (2018). This technique will yield an estimate of µ, σ,
and τ for each participant and condition, which can then
be statistically analyzed with, for example, an analysis of
variance on each parameter. One cannot reliably fit the ex-
Gaussian distribution function to individual distributions
with fewer than 100 trials (Lacouture & Cousineau, 2008;
Ratcliff, 1979; Van Zandt, 2000); however, one can fit the
distribution function to the group distribution (Cousineau
et al., 2016). A group distribution, in this case, is when
the distribution of each participant (in a given condition)
is merged into an aggregate “group” distribution. The ba-
sic procedure involves two steps: calculating group quan-
tiles bymerging the individual quantiles for each cell (each
participant and condition) and then calculating the group
distribution byfitting the ex-Gaussian distribution function
to the group quantiles.

A popular technique for calculating a group distribu-
tion was introduced by Ratcliff (1979). Ratcliff calculated
group quantiles by taking the arithmetic mean of the in-
dividual quantiles. The problem with arithmetic quantile
averaging (Vincent averaging or Vincentizing) is that it can
introduce artifacts in the group distribution that are not
present in any of the individual distributions even with
100 trials per cell (Rouder & Speckman, 2004; Van Zandt,
2000). The current best technique to estimate group quan-
tiles is GQA. It preserves the characteristics of the individ-
ual quantiles without introducing artifacts (see Cousineau
et al., 2016, for the development of GQA). GQA used in the
current tutorial has the added benefit that 95% confidence
intervals for the group quantiles can be computed. We
show how to calculate adjusted confidence intervals that
allow for visual analysis. This relies on the golden rule of
adjusted confidence intervals, which states that if a mean
is outside the 95% adjusted confidence interval of another
mean, then the means are likely statistically significant at
the .05 level (see Cousineau, 2017; Cousineau et al., 2021, for
details on adjusted confidence intervals). Visual analysis is
especially important when comparing group distributions
as we will show that statistical analysis cannot be used.

With the group quantiles calculated with GQA, the ex-
Gaussian distribution function can then be fit to the group
quantiles with QMPE. QMPE returns unbiased parameters
with low variability with as few as 40 trials per cell (Brown
& Heathcote, 2003; see Heathcote et al., 2002, 2004, for the
development of QMPE). Its main advantage is that it is un-
influenced by response time outliers. In the current tuto-
rial, we will demonstrate GQA and QMPE in MATLAB. Our
goal was to lower the barriers to entry for response time
distribution analysis so that more researchers will choose
to thoroughly examine response time data.

Method

The data for the present analysis were previously reported
by Blinch et al. (in press, Experiment 1). The relevant de-
tails from that study are summarized below.

Participants, Design, Apparatus, Procedures, and
Data Analysis

Forty-one volunteer participants (27 female and 14 male
participants) were recruited from the Texas Tech Univer-
sity community. The age of participants ranged from 19 to
37 years old (M = 22.0, Mdn = 21.0, SD = 3.35). Participants
completed a two-choice response time task with pointing
movements to either a short- or long-distance target (10
or 20 cm, respectively) in two conditions. In one condi-
tion, visual information was available for the entire trial
(vision condition). In the other condition, visual informa-
tion was occluded during movement execution (no vision
condition). Each condition consisted of 128 pseudorandom-
ized trials, with 64 trials to the short-distance target and 64
trials to the long-distance target.

Participants were seated at a table with a button box
on the surface of the table. The button box consisted
of a home button, a short-distance target, and a long-
distance target. The home button was a micro push-button
switch. The short- and long-distance targets were clear
push-button switches. The push-button switcheswere each
illuminated by a diffused green light-emitting diode. Partic-
ipants wore visual occlusion spectacles (Translucent Tech-
nologies, PLATO) that controlled their access to visual in-
formation during the trials.

All trials began with the spectacles open to allow visual
information. The participant started each trial by pressing
and holding down the home button with the index finger
of their dominant hand. There was a 1-2 s variable forepe-
riod before either the short- or long-distance target illumi-
nated as the go signal. The participant was instructed to
“react and press the illuminated target as quickly and as ac-
curately as possible”. The participant held down the target
button at the end of their movement until the 2-s recording
interval ended and the target darkened. They could then
begin the next trial by returning to the home button. Trials
in the condition without visual information during move-
ment execution were slightly different, in that the specta-
cles closed to occlude visual information from the release
of the home button until the target button was pressed (i.e.,
from movement initiation to movement termination). The
spectacles opened atmovement termination to provide ter-
minal feedback of the movement. Response time on each
trail was calculated as the interval of time from illumina-
tion of the target button to release of the home button, that
is, from the go signal to movement initiation.
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Listing 1 GQA Steps 1 to 5 From analyse.m

%% Geometric quantile averaging (GQA) Step 1
% Calculate base response time for each participant and condition .
base_rt_array = get_base_rt(rt_array, 1);

%% GQA Step 2
% Calculate quantiles for each participant and condition .
quantile_total = 20;
quantile_array = get_quantiles(rt_array, quantile_total, 1);
quantile_unmodified_array = quantile_array;

%% GQA Step 3
% Subtract base RT from the quantiles for each participant and condition .
for participant_num = 1:participant_total

quantile_array(:,:,participant_num) = quantile_array(:,:,participant_num) -
base_rt_array(participant_num,:);

end

%% GQA Step 4
% Calculate the geometric mean of each quantile across participants for each condition .
quantile_geometric_mean_array = geomean(quantile_array, 3);

%% GQA Step 5
% Add the mean base RT for each condition .
quantile_geometric_mean_array = quantile_geometric_mean_array + mean(base_rt_array,

1);

Results

In this section, we detail the process of response time dis-
tribution analysis with GQA and QMPE with the MATLAB
script analyse.m. The first section of code in analyse.m
(denoted by the two comment characters [%%]) cleans up
the MATLAB environment (closing all figure windows, re-
moving all variables, functions, MEX links, and clearing the
command window). The second code section loads the re-
sponse time data from the rt_array.mat file into the
rt_array variable, which is a 3-D matrix with 64 rows,
4 columns, and 41 pages. Each page contains the response
time data of one participant. The columns contain the four
different conditions: vision during movement execution
and a short-distance target (vision short), vision long, no
vision short, and no vision long. Finally, the rows are the
64 trials.

GQA

GQA involves six steps. 1) Estimate base response time for
each participant and condition; 2) Calculate quantiles for
each participant and condition; 3) Subtract base response
time from the quantiles; 4) Calculate the geometric mean
of each quantile across participants for each condition; 5)
Add the arithmetic mean base response time to each condi-
tion; 6) Calculate confidence intervals for each quantile in
each condition.

In the GQA Step 1 code section (Listing 1), base response
time is estimated for each participant and condition. Base
response time is the shortest possible response when per-
forming the task correctly. The true base response time is
unknown and so it is estimated with the following equa-
tions (Cousineau et al., 2016),

Base RT =
X1:n − h (n, 1) X̄

1− h (n, 1)
(1)

In which

h (n, 1) = 3× 22n−1 (n!)
2

(2n+ 1)!
(2)

In Equations 1 and 2, n is the number of tri-
als, X̄ is the arithmetic mean, and X1:n is the short-
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Table 1 Output From Geometric Quantile Averaging

Step 2 3 4 5 6
Participant 10 10 All All All
Condition No Vision Long (4)
Variable quantile_array quantile_array quantile_geometric_ quantile_geometric_ quantile_geometric_

(:,4,10) (:,4,10) mean_array(:,4) mean_array(:,4) 95_ci_size_array(:,4)
250.2857 21.8347 29.9526 232.2144 4.9313
259.7857 31.3347 37.6837 239.9454 5.6230
265.9286 37.4776 42.4988 244.7606 6.0605
. . . . . . . . . . . . . . .
340.7857 112.3347 128.1106 330.3723 8.4243
346.4048 117.9537 147.4293 349.6911 10.9943
358.5238 130.0728 182.2889 384.5507 16.3093

Note. Data from only participant 10 and condition 4 are listed for Steps 2 and 3. Data from only condition 4 are listed for Steps 4, 5, and 6. Four decimal
places are shown to match the output from MATLAB.

est response time. These equations were combined
in MATLAB as function [ output_array ] =
get_base_rt(data_array, dimension). In anal-
yse.m, the code for GQA Step 1 is base_rt_array
= get_base_rt(rt_array, 1);. The variable
base_rt_array is a 2-D matrix with 41 rows, one for
each participant, and 4 columns, one for each condition;
for example, base response time for the tenth participant in
the no vision long condition, base_rt_array(10,4),
is 228.4510 ms. More information on the get_base_rt
function, and the other functions, is available in MAT-
LAB with the help command; for example, help
get_base_rt.

In GQA Step 2, 20 quantiles (.0476, .0952, ..., .9048,
.9524) are calculated for each participant and condi-
tion. We will explain how to determine the number of
quantiles for any dataset in the Discussion. The quan-
tiles are calculated with function [ output_array
] = get_quantiles(data_array, number_of_
quantiles, dimension). The main code in this sec-
tion is quantile_array = get_quantiles(rt_
array, quantile_total, 1);. quantile_total
is 20 and quantile_array is a 3-D matrix with 20 rows
(one for each quantile), 4 columns (one for each condition),
and 41 sheets (one for each participant). Example output
from this step, and the following GQA steps, is shown in
Table 1.

Built-in MATLAB functions and operators are used
for QGA Steps 3 to 6. In GQA Step 3, the base re-
sponse time for each participant and condition is sub-
tracted from the matching quantiles with a for loop.
In GQA Step 4, the geometric means of the quantiles
are calculated (quantile_geometric_mean_array
= geomean(quantile_array, 3);). These are
stored in quantile_geometric_mean_array, which
is a 2-D matrix with 20 rows (one for each quan-
tile) and 4 columns (one for each condition). In GQA

Step 5, the group base response time in each con-
dition is calculated as the arithmetic mean base re-
sponse time across participants. These group base re-
sponse times are then added to the geometric mean
quantiles (quantile_geometric_mean_array =
quantile_geometric_mean_array + mean(base
_rt_array, 1);).

In GQA Step 6, 95% confidence intervals are calculated
for the group quantiles in each condition and then the
results are plotted. We recommend difference-adjusted
confidence intervals for between-participant comparisons
and correlation- and difference-adjusted confidence inter-
vals for within-participant comparisons (Cousineau, 2017;
Cousineau et al., 2021). More specifically, the difference
adjustment accounts for comparing two confidence inter-
vals and the correlation adjustment accounts for within-
participant correlation across conditions for each quantile
(but not across quantiles). With these adjusted confidence
intervals, if a specific group quantile in one condition falls
outside the 95% adjusted confidence interval of the same
quantile in another condition, then they are likely signifi-
cantly different at the .05 level (the golden rule of adjusted
confidence intervals; Cousineau, 2017; Cousineau et al.,
2021). Conversely, if a specific group quantile in one condi-
tion is within the 95% adjusted confidence interval of the
same quantile in another condition, then they are likely
not significantly different. Correlation- and difference-
adjusted confidence intervals were used in the current tu-
torial to compare the group quantiles across the four con-
ditions: vision short, vision long, no vision short, and no
vision long. These confidence intervals were calculated
with the Cousineau-Morey method. This method assumes
that the means are normally distributed and that there are
equal variances of difference scores. If there are issues
with normality, then the visual analysis with the golden
rule and the statistical analysis are more likely to differ.
If there are issues with normality, then the confidence in-
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Figure 2 Group Quantiles in the Four Conditions. Error bars are 95% correlation- and difference-adjusted confidence
intervals (Cousineau, 2017; Cousineau et al., 2021).

tervals likely have different widths. It may be necessary
to calculate an average width for the confidence intervals
(square thewidths, calculate the arithmeticmean, and then
take the square root) or use the Tryon adjustment (Tryon,
2001).

The first for loop in GQA Step 6 (Listing 2) removes
between-participant variance from the quantiles, which
is necessary for correlation-adjusted confidence intervals.
The correlation- and difference-adjusted 95% confidence
intervals are then calculated. Note that the standard error
of the geometric mean is calculated with the following for-
mula (Harding et al., 2014):

SEG = Gx × slog x√
n− 1

(3)

In Equation 3, Gx is the geometric mean for one quantile
and condition, slog x is the standard deviation of the loga-
rithm of the individual data for the same quantile and con-
dition, and n is the number of participants. The halfwidth
of the correlation- and difference-adjusted confidence in-
terval is then calculated with the following formula:

CIHW =
√
2tα,n−1SEG

√
k/k − 1 (4)

Note that tα,n−1 is the critical value of the Student’s t-
distribution and k is the number of conditions.

The second for loop in GQA Step 6 plots each partici-
pant’s quantiles (red lines) and the group quantiles (black
line) with correlation- and difference-adjusted 95% confi-
dence intervals with each condition on its own figure. Fig-
ure 2 illustrates the group quantiles with correlation- and

difference-adjusted 95% confidence intervals in all four
conditions. The conditions can be visually analyzed with
the golden rule of adjusted confidence intervals to deter-
mine whether statistically significant differences between
conditions at each group quantile are likely. Applying the
golden rule to Figure 2, the vision short and vision long con-
ditions are likely comparable at every quantile. Likewise,
the no vision short and no vision long conditions are likely
comparable at every quantile. Most importantly, the vision
conditions are likely significantly different from the no vi-
sion conditions from the .1429 to the .9524 quantiles. (At the
.0476 and .0952 quantiles, the vision conditions are signifi-
cantly different from the no vision long condition.) The dif-
ferences between the vision and no vision conditions can
be further explored by comparing their ex-Gaussian distri-
bution functions.

QMPE

Fitting the ex-Gaussian distribution function to the group
quantiles in each condition involves three steps. 1) Add
zero milliseconds and positive infinity milliseconds as
the 0 and 1 quantiles; 2) Estimate the parameters of
the ex-Gaussian distribution function for each group/-
condition with QMPE; 3) Optionally, calculate the ex-
Gaussian probability density functions for each group/-
condition and plot the resulting best-fitting distributions.
In the QMPE Step 1 code section (Listing 3 at the end),
zero and positive infinity are added as the first and last
group quantiles. This is a requirement of the QMPE func-
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Listing 2 First Half of GQA Step 6 From analyse.m

%% GQA Step 6
% Plot the individual and group quantiles .
% For the group quantiles , include correlation= and difference=adjusted 95% confidence intervals .

% Correct quantile_array for correlation=adjusted Cis
quantile_corrected_array = ones(size(quantile_array)) .* NaN;

for x = 1:size(quantile_array,1)
temp_array = squeeze(quantile_array(x,:,:))';

participant_mean_array = nanmean(temp_array,2);
grand_mean = nanmean(temp_array(:));

temp_corrected_array = bsxfun(@minus, temp_array, participant_mean_array) +
grand_mean;
for y = 1:size(temp_corrected_array, 1)

quantile_corrected_array(x,:,y) = temp_corrected_array(y,:);
end

end

% Calculate the halfwidth of 95% confidence intervals
quantile_geometric_se_array = geomean(quantile_array, 3) .* (std(log(

quantile_corrected_array), 0, 3) / sqrt(participant_total - 1));
quantile_geometric_95_ci_size_array = sqrt(2) * tinv(.975, participant_total - 1) *

quantile_geometric_se_array * sqrt(condition_total/(condition_total-1));

tion, which requires the first and last quantiles to be the
extremes of the theoretical distribution (zero and posi-
tive infinity for the ex-Gaussian distribution). The geo-
metric mean quantiles in the no vision long condition,
quantile_geometric_mean_2_array(:,4), are 0,
232.2144, 239.9454, . . . , 349.6911, 384.5507, and Inf,
which is how MATLAB represents positive infinity.

In QMPE Step 2, the parameters of the ex-
Gaussian distribution function (µ, σ, and τ ) are es-
timated with function [ parameter_array,
minimum_log_likelihood, return_code ] =
QMPE(data_array, distribution, varargin).
The input distribution is set to exGaussian for the ex-
Gaussian distribution function.2 The input varargin
is an optional variable-length input argument list
for advanced options. It was set to ’plotF’,
0, ’startPoint’, [mu_init, sigma_init,
tau_init]. A plotF of 0 does not plot the real time re-
sults of parameter estimation during the search. The input
startPoint sets the initial parameters for the search
to mu_init, sigma_init, and tau_init, which are

reasonable starting search estimates for each condition.
These values for the no vision long condition (condition
4) are 247.0700, 36.8010, and 43.2242, respectively. As
for the output, parameter_array is a row vector with
µ, σ, and τ . The output minimum_log_likelihood
is related to the index of fit, and return_code equals
1 on success. The parameters in the four conditions
(parameter_condition_array) are listed in Table
2. The QMPE function uses the Nelder-Mead method for
multidimensional unconstrained optimization (MATLAB’s
fminsearch function).

In QMPE Step 3, the densities of the entire ex-Gaussian
distribution function are determined with function
pdf = exGaussianpdf(x, mu, sigma, tau).
The probability density functions are calculated for re-
sponse time values from 0 to 1,000 ms (in increments of
1 ms; 0:1000 in MATLAB) with the exGaussianpdf
function. These are stored in pdf_array, a 2-D matrix
with 1,001 rows (one for each response time value) and
4 columns (one for each condition). Finally, the four ex-
Gaussian probability density functions are plotted on the

2QMPE was originally written in Fortran 90 (Heathcote et al., 2004). It was then written in MATLAB by Valerio Biscione
(www.mathworks.com/matlabcentral/fileexchange/46330-qmle-zip). We edited Valerio’s code to use cumulative distribution functions for faster
computation.
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Table 2 Parameters of the ex-Gaussian Distribution Functions of the Group Distribution in the Four Conditions

Condition µ (ms) σ (ms) τ (ms)
Vision Short 235.6180 17.0159 35.0118
Vision Long 236.8007 16.4027 34.1507
No Vision Short 240.9808 19.3727 44.8679
No Vision Long 242.0632 15.7175 44.8294

Note. Note. Four decimal places are shown to match the output from MATLAB.

Figure 3 Best-Fitting ex-Gaussian Probability Density Functions Based on the Group Quantiles in the Four Conditions

same figure (Figure 3). The excellent fit of the ex-Gaussian
distribution functions to the group quantiles is depicted in
Figure 4.

It is impossible to statistically compare the parameters
of the ex-Gaussian distribution functions in the four con-
ditions as these estimates have unknown standard errors.
However, we know from the group quantiles and their ad-
justed confidence intervals that there are significant differ-
ences between the vision andno vision group distributions.
These significant differences can aid in the visual analy-
sis of the ex-Gaussian parameters. The mean of the Gaus-
sian component (µ) in the no vision conditions (242 ms)
was longer than in the vision conditions (236 ms). This is
illustrated in the probability density functions as a right-
ward shift in the mode for the no vision conditions (Figure
3, black lines vs. grey lines). A larger µ suggests that re-
sponse time on most trials is longer without vision during
movement execution. The standard deviation of the Gaus-
sian component (σ) was 16.7 ms in the vision conditions.
In comparison, σ was larger for short movements in the no
vision condition (19.4 ms). This is illustrated as a slightly

longer left tail and a lower mode for the no vision short
condition (Figure 3, solid black line). A larger σ suggests
that response time is more variable for short movements
without vision. Finally, the single parameter for the mean
and standard deviation of the exponential component (τ )
was larger in the no vision conditions (44.8 ms) compared
to the vision conditions (34.6). This is illustrated as longer
right tails and lower modes for the no vision conditions
(Figure 3, black lines vs. grey lines). A larger τ suggests
that trials with long response time aremore commonwhen
there is no vision during movement execution. Overall,
response time performance is worse without vision: it is
longer, more variable for short-amplitudemovements, and
there are more trials with long response time. Note that in
our comparisons of the parameters with and without vi-
sion, we focused on the single most obvious difference be-
tween the ex-Gaussian probability density functions. How-
ever, changing a single parameter will have obvious and
subtle effects on the entire density function. A larger σ or
τ , for example, will also decrease the peak of the probabil-
ity density function, which is visible in Figure 3.
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Figure 4 Best-Fitting ex-Gaussian Cumulative Density Functions Compared to the Group Quantiles in the Four Conditions

Discussion

In the current tutorial, we demonstrated a procedure for
the distribution analysis of response time data. (Recall that
a distribution analysis is necessary to properly analyze re-
sponse time data because it is positively skewed.) The pro-
cedure involves calculating group quantiles with GQA and
then fitting the ex-Gaussian distribution function to the
groupquantileswithQMPE. An advantage of this technique
is that it requires as few as 40 trials per cell. More specif-
ically, two studies investigated the bias and efficiency of
estimating ex-Gaussian distribution functions with QMPE
(Heathcote et al., 2002, 2004). Heathcote et al. examined
estimates based on 40, 80, and 160 trials, and they found
robust and efficient estimates even with 40 trials.

There are two important caveats when applying these
studies to the current tutorial. First, bias and efficiency
with fewer than 40 trials have not been examined. Sec-
ond, and most importantly, these studies investigated the
use of QMPE on individual participants. The present tuto-
rial involves GQA followed by QMPE. To address the sec-
ond caveat, we ran several simulations to estimate the ef-
ficiency of GQA followed by QMPE (detailed in the Ap-
pendix). The simulations suggested that the geometric
mean of quantiles from 40 participants with 40 trials per
condition was almost as efficient as maximum-likelihood

estimation of a single participantwith 100 trials (Van Zandt,
2000). Thus, GQA followed by QMPE on a moderate num-
ber of participants with a moderate number of trials has
the potential to return efficient estimates.

For typical response time distribution analysis, where,
for instance, the ex-Gaussian distribution function is fit to
individual distributions (not the group distribution), 100
trials per cell are recommended (Lacouture & Cousineau,
2008; Ratcliff, 1979; Van Zandt, 2000). Lacouture and
Cousineau (2008) showed how to fit an ex-Gaussian distri-
bution to response time data. They examined the bias and
efficiency of their method with a Monty Carlo study based
on 10, 20, 30, 50, 100, 500, 1000, and 5000 trials. As seen
in Figure 7 of Lacouture and Cousineau (2008), the magni-
tude of the bias of the parameter estimates doubles from a
sample size of 500 to 100 and then doubles again from 100
to 50. The variance of the estimates was about 20 to 40 ms
with a sample size of 100. This is well below the observed
variability in response time, and so the added uncertainty
of the estimates is acceptable. With a sample size of 50, the
added variability might exceed the standard deviation of
response time in some cells, which should be avoided. With
a sample size of 500, the added uncertainty is small, but
such large samples are prohibitive. Hence, a sample size of
100 is an acceptable tradeoff. Collecting 40 trials per cell is
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certainlymore feasible than 100, but 40 participants and 40
trials per cell could still bemore than some studies provide.
Thus, the number of trials required should be considered
when designing an experiment that includes distribution
analysis.

The number of trials will also affect the number of
quantiles/bins. As with the number of trials, the more
quantiles/bins, the better (Heathcote et al., 2002). Let us
consider just the number of bins for simplicity’s sake (the
number of quantiles can be calculated by subtracting one
from the number of bins). There were 64 trials in each cell
in the present dataset. The number of bins is maximized
when there is one datapoint in each bin. Therefore, the 64
trials per cell in the present dataset could be used to cre-
ate at most 64 bins. However, that is assuming there are
no outliers in the data, which is unlikely. When there are
outliers, there needs to bemore than one datapoint in each
bin to reduce the impact of outliers. A possible formula to
determine the number of bins based on the number of tri-
als (n) and the hypothesized proportion of outliers (po) is
as follows,

Bins =
1

po +
1
n

(5)

We estimated the proportion of outliers in each cell
by applying a modified square root transformation and
then using z-scores to identify outliers (α = .01 and
a Bonferroni correction based on the number of trials
in each cell; Cousineau & Chartier, 2010). This pro-
cedure is demonstrated on the current dataset in the
proportion_of_outliers.mMATLAB script. The re-
sults suggested that the proportion of outliers ranged from
.00 to .03125. We used the bin with the most outliers (n =
64, po = .03125) to calculate the number of bins, 21.33,
which was rounded down to the nearest whole number.
Thus, the number of bins in the current tutorial was 21 and
the number of quantiles was 20. Two hypothetical exam-
ples are when the proportion of outliers is 0 or .4844, the
number of bins is 64 or 2 (the 2 bins are cut by the .5 quan-
tile: the median).

There are three potential downsides to group distri-
butions compared to individual distributions (Lacouture
& Cousineau, 2008). First, more calculations are required
for a group distribution. However, we have encapsulated
these calculations into MATLAB code that is publicly avail-
able at osf.io/be7gp/ . Second, group distributions can-
not be analyzed with, for example, analysis of variance
or regression. With the group distribution, one can esti-
mate the parameters of the ex-Gaussian distribution func-
tion. However, it is impossible to estimate these parame-
ters for each participant with the group distribution. Re-
call that at least 100 trials per cell are recommended to
fit individual distributions, which could then be analyzed

with parametric statistics. Our suggested solution is to use
the golden rule of confidence intervals to compare differ-
ent group distributions to estimate statistical significance
(Cousineau, 2017; Cousineau et al., 2021). For the golden
rule, correlation- and difference-adjusted confidence in-
tervals must be used for within-participant comparisons
and difference-adjusted confidence intervals must be used
for between-participant comparisons. The present tutorial
demonstrated how to interpret correlation- and difference-
adjusted confidence intervals in a within-participant de-
sign. The third downside to group distributions is that con-
fidence intervals cannot be calculated for the parameters of
the ex-Gaussian distribution functions. This is because the
standard errors of the parameters are unknown. Future re-
search could investigatewhether bootstrap estimates could
be used to calculate standard errors and confidence inter-
vals. Another topic for investigation is whether it would
be better to use a theoretical distribution with parameters
that have known standard errors. This is the case for the
Weibull distribution, which has occasionally been used for
distribution analysis of response time data (e.g., Cousineau
et al., 2002; Logan, 1992; Palmer et al., 2011).

In conclusion, it is widely known that response time
data have an asymmetric distribution; positively skewed
response time data require a distribution analysis to avoid
errors of interpretation. One potential reason that re-
sponse time distribution analyses are atypical is that at
least 100 trials are recommended for each participant in
each condition, which is farmore trials than inmost experi-
ments. In the current tutorial, we demonstrated a distribu-
tion analysis technique that requires as few as 40 partici-
pants with 40 trials per condition. We hope that by decreas-
ing the number of required trials and by providing flexible
MATLAB code, wewill encouragemore researchers to thor-
oughly examine response time data.

Authors’ note

Our thanks to Associate Editor, Professor Roland Pfister,
Professor Josh Sandry, and Valentin Koob for their insight-
ful critiques..
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Table A1 Average Correlations Within and Between Conditions for the Three Parameters

µ σ τ
Within condition µ 1.00

σ .48* 1.00
τ .14 -.03 1.00

µ σ τ
Between conditions µ .73* .18 .34*

σ .15 .13 .16
τ .34* .17 .42*

Note. * indicates p ≤ .05.

Van Zandt, T. (2000). How to fit a response time distribution.
Psychonomic Bulletin & Review, 7(3), 424–465. doi: 10.
3758/BF03214357.

Welford, A. T. (Ed.). (1980). Reaction times. Academic Press.

Whelan, R. (2008). Effective analysis of reaction time data.
The Psychological Record, 58(3), 475–482. doi: 10.1007/
BF03395630.

Appendix: TheAdvantage ofUsingMultiple ParticipantsWith FewData Points in theGeometricQuantileAveraging
Framework

Suppose we have the choice between testing one participant and getting 100 observations in the condition of interest or
testing ten participants and getting ten observations for each participant in the condition of interest; which would be
better? Both scenarios result in a total of 100 observations. The following simulations suggest that the two scenarios are
comparable when the participants have homogenous response time distributions. Further simulations will investigate
the more realistic scenario of heterogeneous participants. These simulations will suggest that the geometric mean of
quantiles from a moderate number of participants each having a moderate number of observations has the potential to
return efficient estimates. The relationships between participants are critical to these latter simulations, and so we will
begin by looking at the intercorrelations of the response time distribution functions.

Parameter Intercorrelations Within and Between Conditions

To characterize the nature of the heterogeneous response time distributions, we estimated the three parameters of the
ex-Gaussian distribution function (µ, σ, and τ ) for each of the forty-one participants in each of the four conditions (vision
short, vision long, no vision short, andno vision long). Next, we computed the Pearson correlation coefficients between the
combinations of the three parameters and the four conditions for a 12 × 12 correlation matrix. As we were not so much
interested in the intercorrelations in specific conditions of this experiment, we averaged the four sets of correlations
within the same conditions (a symmetrical 3 × 3 matrix) and the six sets of correlations involving different conditions (a
non-symmetrical 3 × 3 matrix). Both correlation tables are shown in Table A1. With 41 participants, correlations greater
than or equal to .31 are significant (two-tailed tests).

Between conditions, there was a strong correlation between µs (mean r = .73) and a strong correlation between
τs (mean r = .42). As both parameters affect mean response time (X̄ = µ + τ ), we interpret these correlations by
a general speed factor; participants that are fast tend to be fast in most conditions. Similarly, τ correlates with µ of
other conditions and vice-versa, reflecting that mean response time of participants manifest in both parameters. The
relationships within conditions are needed to determine the structure of the heterogeneity. The result supported that the
only strong correlation was between µ and σ. This suggests that slower participants tend to have more variable response
time. Cousineau et al. (2023) found a similar heterogeneity of response time albeit with different methodology. These
relationships will be used to model heterogeneity in our subsequent simulations.

Simulating Distributions From a Single Participant, Multiple Homogeneous Participants, and Multiple Heteroge-
neous Participants

The techniquepresented in the current tutorial is based on thequantilemaximumprobability estimator (QMPE;Heathcote
et al., 2004). This method estimates parameters by fitting the cumulative distribution function (CDF) of the response time
distributions, which is contrary to maximum-likelihood estimation (MLE) that fits the likelihood of the dataset. Van Zandt
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(2000), probably the most comprehensive examination of distribution fitting, examined parameter recovery using CDF,
MLE, and five other fitting techniques. She concluded that CDF and MLE fitting were the two best and noted that MLE
slightly outperformed CDF fitting (see Parameter Recovery, The ex-Gaussian section on pp. 449-450). Examination of her
Figure 16 indicates that CDF fitting is approximately 1.2 times more variable (less efficient) thanMLE fitting when sample
size is 100. As 100 is the consensual minimum sample size for fitting parameters from a single participant (Lacouture &
Cousineau, 2008; Ratcliff, 1979; Van Zandt, 2000), the question is, therefore, whether 40 heterogeneous participants, each
with 40 data points, will result in standard error of the CDF some 1.2 times smaller than with one participant having 100
data points. This would be comparable to the performance of MLE fitting of one participant with 100 data points.

To establish a baseline, we generated 100 simulated response time values from a single participant and estimated
one point on the resulting CDF curve. The participant’s response time was assumed to follow an ex-Gaussian distribution
functionwith parametersµ = 500, σ = 100, and τ = 250 (Table A2, Baseline). We repeated this over 50,000 replications to
get themean and standard deviation of the estimate; the latter is the standard error. We reported the results of estimating
the .50 quantile (Table A2, Simulation 1; i.e., median response time) but similar resultswere found for other quantiles from
.05 to .95.

In a second simulation, we generated ten homogeneous participants each with ten response time values. The par-
ticipants were homogeneous in that their response time followed the same distribution (ex-Gaussian with parameters
µ = 500, σ = 100, and τ = 250). We then estimated the .50 quantile of each participant and computed the geometric
mean of these estimates to emulate geometric quantile averaging (GQA). We repeated this 50,000 times and reported the
mean and standard error (Table A2, Simulation 2). The estimate of the median was biased downward. This was caused by
the positively skewed distribution. With small samples, the lower part of the distribution can be overrepresented, which
drags the estimate of themedian downward. However, the standard errorwas comparable to the first simulation. In other
words, the efficiency of the estimates was comparable for one participant with 100 data points and from ten homogenous
participants each with ten data points.

In a third simulation, we reproduced the above and introduced heterogeneity in the participants’ true parameters.
To that end, we varied µ across simulated participants by adding a random number between -40 and +40. The standard
deviation of such randomnumbers is approximately 23, whichmatched the observed standard deviations in the estimates
of µ ([22.7, 26.7]). To introduce correlation between µ and σ, we added one-fifth of the randomnumber to σ. As before, we
used the geometricmean over the estimates and reported themean and standard error across 50,000 simulated sets of ten
participants (Table A2, Simulation 3). Unsurprisingly, the standard errors increased to 34.5 because of the heterogeneity
of participants.

The first three simulations were rerun with 1600 data points (i.e., a single participant with 1600 observations or 40
participants with 40 observations). Standard error was much smaller for a single participant and for 40 homogeneous
participants (Table A2, Simulations 4 and 5, respectively). It was about four times smaller compared to the equivalent
stimulations with 100 data point. This improvement in efficiency is predictable because we multiplied the number of
data points by 16, and the standard error decreased by

√
16 = 4. More critically, with heterogeneous participants, the

standard error was 24.0 (Table A2, Simulation 6), which was slightly smaller than the baseline condition (26.6). Hence,
fitting CDF from 1600 data points from heterogeneous participants is preferable to fitting CDF from 100 data points (single
or homogenous participants).

As CDF was slightly less efficient than MLE (by a factor of 1.2; Van Zandt, 2000), we note that the benefit here is not 1.2
times smaller, but close (about 1.1 times smaller). Consequently, using 40 participants each with 40 response time values,
we almost match the precision afforded by fitting a single participant with 100 data points. In sum, these simulations
suggest that the geometric mean of quantiles from a moderate number of participants each having a moderate number
of observations has the potential to return efficient estimates.

Open practices
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Table A2 Mean and Standard Error of the Estimates for the .50 Quantile Across 50,000 Replications in Various Scenarios

Scenario Description Mean Estimate
(ms)

Standard Error of
the Mean Estimate
(ms)

Baseline True value of the .50 quantile 691 n/a
Simulation 1 One participant with 100 data points 689 26.6
Simulation 2 Ten homogeneous participants each with ten data points 670 25.2
Simulation 3 Ten heterogeneous participants each with ten data points 670 34.5
Simulation 4 One participant with 1600 data points 691 6.6
Simulation 5 Forty homogeneous participants each with 40 data points 685 6.5
Simulation 6 Forty heterogeneous participants each with 40 data points 684 24.0

Copyright © 2024, Blinch and Cousineau. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original
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Listing 3 Most of the QMPE Code From analyse.m

%% Quantile maximum probability estimator (QMPE) Step 1
% Join 0 and Inf as the first and last group quantiles .
quantile_geometric_mean_2_array = ones(size(quantile_geometric_mean_array,1)+2,

condition_total) .* NaN;
quantile_geometric_mean_2_array(1,:) = 0;
quantile_geometric_mean_2_array(end,:) = Inf;
quantile_geometric_mean_2_array(1+1:end-1,:) = quantile_geometric_mean_array;

%% QMPE Step 2
% Determine the ex=Gaussian parameters (mu, sigma, and tau) with QMPE.
% QMPE requires ExGausscdf.
parameter_condition_array = ones(3,condition_total) .* NaN;
for condition_num = 1:condition_total

% Reasonable starting search values
tau_init = mean(std(rt_array(:,condition_num,:),0,1)) .* 0.8;
mu_init = mean(mean(rt_array(:,condition_num,:),1)) - tau_init;
sigma_init = sqrt(mean(var(rt_array(:,condition_num,:),1)) - tau_init^2);

[ parameter_array, minimum_log_likelihood, return_code ] = QMPE(
quantile_geometric_mean_2_array(:,condition_num), 'exGaussian', 'plotF', 0, '
startPoint', pinit);
parameter_condition_array(:,condition_num) = parameter_array';

if (return_code ~= 1)
error('QMPE died!');

end
end

%% QMPE Step 3
% Calculate the ex=Gaussian probability density functions .
pdf_array = ones(1001,condition_total);
for condition_num = 1:condition_total

pdf_array(:,condition_num) = exGaussianpdf(0:1000, parameter_condition_array(1,
condition_num), parameter_condition_array(2,condition_num),
parameter_condition_array(3,condition_num))';

end
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