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Relative importance analysis
for count regression models
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Abstract Count variables are common in behavioral science as an outcome. Count regression
models, such as Poisson regression, are recommended when analyzing count variables but can be
challenging to interpret given their non-linear functional form. I recommend relative importance
analysis as a method to use in interpreting count regression model results. This work extends on
past research by describing an approach to determining the importance of independent variables
in count regression models using dominance analysis. Herein, dominance analysis is reviewed as
a relative importance method, recommend a pseudo-R2 to use with count regression model-based
dominance analysis, and outline the results of an analysis with simulated data that uses the recom-
mended methodology. This work contributes to the literature by extending dominance analysis to
count regression models and provides a thoroughly documented example analysis that researchers
can use to implement the methodology in their research.
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Introduction

Behavioral scientists often use how many times a behav-
ior is observed as an outcome to answer research ques-
tions. Such behavior counts arise from many different
sources among aggreates or collectives of people and indi-
viduals over time. Aggregate behavior counts used in the
literature include the number of organizations adopting a
specific practice in a week (Naumovska et al., 2021) and
number of divestitures organizations make in a year (Bet-
tinazzi & Feldman, 2021). Individual-level behavior counts
used in the literature include the number of scientific arti-
cles published in a year among scholars (Rotolo & Messeni
Petruzzelli, 2013) or number of errors that resulted in an
accident in the last three months among medical doctors
(Naveh et al., 2015). Behavior counts such as the above
examples are valuable outcomes given that behavioral sci-
ence concepts are often defined in terms of behavior (e.g.,
job performance; Motowidlo, 2003) and strategies to val-
idate outcomes often use observable behavior as an out-
come (e.g., criterion-oriented validity; Cronbach & Meehl,
1955).

However valuable as outcomes, behavior counts as a
dependent variable in data analysis require the use of spe-
cialized tools. The recommended data analysis strategy
with behavior counts uses regression models designed for
non-negative integer or count distributions (e.g., Blevins
et al., 2015). These count regression models include the
Poisson regression and negative Binomial regression mod-
els. Both Poisson regression and negative Binomial regres-
sion are commonly used in the behavioral science litera-
ture and implemented in many data analytic software en-
vironments.

Count regression models are generalized linear mod-
els that transform the predictive equation to ensure that
predicted values stay in the range of the depemdent vari-
able. Count regression models use an exponential or log-
linear transformation that has the form y = eβX . Thus,
the predictive equation parameterized by β requires back-
transformation using a natural logarithm in order to obtain
a predicted count value. This log-linear transformation en-
sures that the linear predicted values can take on any real
number yet, when back-transformed into predicted counts,
will have a lower bound of 0.
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Count regression model results are challenging to in-
terpret directly relative to linear regression. This is be-
cause count regressionmodel coefficients describe how the
natural logarithm of the dependent variable changes given
a 1 unit change to an independent variable. When back-
translated through an exponential function, count regres-
sion model coefficients are known as incidence rate ratios
(IRRs) and describe the percentage change in the depen-
dent variable per unit change to the independent variable.
Because IRRs describe percentage change, count regression
model coefficients produce predicted values that are rela-
tive or change in their magnitude over the continuum of
the dependent variable. For example, a count regression
model coefficient does not differentiate between a change
from1 predicted behavior to 2 and 5 predicted behaviors to
10. Despite the noteworthy difference in the absolute num-
ber of behaviors in both examples, each describe a 100%
increase.

Model post-estimation methods such as graphing es-
timated marginal means are useful interpretive tools for
log-linear count regression models as they help to con-
textualize the count regression models’ predicted values.
Another increasingly common model post-estimation tool
used to contextualize model predictions is relative impor-
tance analysis (Tonidandel & LeBreton, 2011). Relative im-
portance analysis is used to compare how each indepen-
dent variable in themodel contributes to amodel fit metric
such as theR2 and is commonly implemented using domi-
nance analysis (DA; Azen & Budescu, 2003).

Published methodological work has extended DA from
the linear regression model on which it was originally de-
veloped, to other linear models including binary (Azen
& Traxel, 2009), ordered, and multinomial logit models
(Luchman, 2014). Thiswork extendsDA to count regression
models and, in so doing, makes two contributions to the
literature. This work first reviews DA as a relative impor-
tance methodology, recommends using a specific pseudo-
R2 statistic for count regression model-based DA, and im-
plements a data analytic example of DA.

Second, this paper extends on the work of Blevins,
Tsang, and Spain (2015) who review and offer multiple rec-
ommendations for the application of count regressionmod-
els to research questions in behavioral science. Blevins et
al. describe model and analytic details about the Poisson
regression and negative Binomial regression models and
provide a flowchart that researchers can use to identify
which count regression model might be best to choose for
their data analysis. In this work, I extend on their review
to add an in-depth discussion of DA and its role as a post-
estimation methodology. DA extends on the interpretation
of coefficients to describe how the coefficients, when ap-
plied to the observed data, improvemodel-to-data fit in pre-

dicting the count dependent variable.
I begin with a discussion of the conceptual background

of DA. The conceptual discussion of DA focuses on outlining
three different levels of dominance between independent
variables, how these levels of dominance are determined in
the data, andwhat each level of dominancemeans in terms
of independent variable importance. The next section rec-
ommends a fit metric to apply to count regression models
for the purpose of determinining importance using DA. In
this count regression model focused section, I draw paral-
lels between the explained variance R2 used by the linear
regressionmodel as a fitmetric and an analogous fitmetric
for count regression models that is particularly useful for
DA. Finally, I describe an extensive data analytic example.
This final section uses simulated data to estimate a Poisson
regressionmodel and a Poisson regressionmodel-basedDA
where the methods described in the previous two sections
are applied.

Dominance Analysis

Behavioral scientists have used many methods over the
years to determine how important an independent vari-
able is in a linear regression model (see reviews in
Grömping, 2007; Johnson & LeBreton, 2004). Methods for
determining the importance of an independent variable
have ranged from the use of a correlation coefficient be-
tween the independent variable anddependent variable, to
the independent variable’s standardized regression coeffi-
cient, to the increment the independent variable makes to
theR2 over and above other independent variables. These
methods, however informative in specific circumstances,
make assumptions about an independent variable’s contri-
bution to prediction. These methods assume in some cases
that an independent variable’s contribution should not be
adjusted for other independent variables (i.e., the corre-
lation coefficient) and in other cases that the adjustment
should occur only after all other independent variables are
included (i.e., incrementalR2, standardized coefficient). In
most situations, independent variable inclusion ordering is
arbitrary and as opposed to choosing one approach or the
other, recommended importance methods should account
for different bi- andmultivariate relationships with the de-
pendent variable (Johnson & LeBreton, 2004). The most
conceptually useful importance methods then produce de-
terminations that are independent of independent variable
inclusion order.

DA is a method for determining independent variable
importance independent of inclusion order that was origi-
nally developed for the linear regressionmodel by Budescu
(1993). DA extended on previously proposed methods by
defining importance in termsof pairwise independent vari-
able comparisons across R2 values associated with mul-
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Table 1 Example Dominance Comparisons

Sub-model withX Sub-model with Z
Across null set/no other independent variables R2

Y∼X+{∅} R2
Y∼Z+{∅}

Comparing acrossW R2
Y∼X+{W} R2

Y∼Z+{W}
Comparing across V R2

Y∼X+{V } R2
Y∼Z+{W}

Comparing across bothW and V R2
Y∼X+{W+V } R2

Y∼Z+{W+V }

tiple sub-models. A linear regression model with p inde-
pendent variables produces a total of 2p sub-models corre-
sponding to all possible combinations of independent vari-
ables included or excluded from estimation. DA achieves
order independence in the importance determiniations it
makes by comparing theR2 values associated with the two
focal, comparison independent variables’ across all sub-
models that include combinations of non-focal, other inde-
pendent variables. A non-focal independent variable sub-
model is one that contains a distinct subset of the p−2 inde-
pendent variables that are not the focus of the comparison.
The ∅ or a sub-model that includes no non-focal indepen-
dent variables, is also a possible sub-model used in these
comparisons. In this way, the dominance comparisons do
not depend on the order of independent variable inclusion
and require that one of the focal, comparison independent
variables obtain a higher R2 value than the other focal
independent variable across all sub-models—that is, irre-
spective of the order in which the independent variable is
included in the model.

As an example of how the dominance comparison is im-
plemented, consider amodelwith 4 independent variables:
V , W , X and Z predicting Y . If I am comparing X and
Z , there would be a total of four possible R2 comparisons,
each ofwhich is reported below in Table 1. In each compar-
ison, the subscripted model indicates the linear regression

model prediction equation in symbolic form. The terms in
braces include the other, non-focal independent variable
subset across which both of the focal, comparison indepen-
dent variables are being evaluated. X dominates Z only
when all the R2 values for sub-models that include X are
greater than the R2 values for sub-models that include Z .
The dominance comparisons described in this section are
known as complete dominance and are recognized as the
most stringent, or hardest to achieve, dominance designa-
tion that an independent variable can have over another
independent variable (Azen & Budescu, 2003).

Complete Dominance

Complete dominance is the most stringent of the domi-
nance designations as it is a difficult designation for an
independent variable to achieve over another. Complete
dominance is difficult to achieve as it involves direct com-
parisons between independent variable pairs across multi-
ple sub-modelR2 values and is non-compensatory; all sub-
modelR2 value comparisons must show that one indepen-
dent variable has a larger value than the other independent
variable or the designation will fail to be achieved.

The process for determining complete dominance be-
tween a pair of independent variables, for exampleX and
Z , with an arbitrary number of non-focal independent
variables in the model (p− 2) proceeds as:

XDf Z if 2p−2 =

2p−2∑
j=1

{
ifR2

Y∼X+{uj} > R2
Y∼Z+{uj} then 1

else 0
(1)

where uj is a distinct subset of the other p−2 independent
variables. As in Table 1, the braces surrounding uj indi-
cate that it is a subset of non-focal independent variables.
TheDf in this case is a designation indicating complete (or
full/f ) dominance ofX over Z . Ultimately, ifX completely
dominates Z as is outlined in Equation 1, X is clearly and
unconditionally better than Z in terms of explaining vari-
ance in Y given the linear regressionmodel fromwhich all

sub-models were derived.
Because complete dominance is a difficult criterion to

achieve in comparing independent variable pairs, alter-
native and more compensatory, dominance designations
have been proposed to provide more ways to compare the
predictive usefulness of independent variables against one
another. As I will discuss, the alternative dominance desig-
nations involve averaging the R2 increment values associ-
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Table 2 Example Conditional Dominance

Comparing at Average withX Average with Z
One independent variable ∆R2

Y∼X+{∅} ∆R2
Y∼Z+{∅}

1
3 (∆R2

Y∼X+{W}+
1
3 (∆R2

Y∼Z+{W}+

Two independent variables ∆R2
Y∼X+{V }+ ∆R2

Y∼Z+{V }+

∆R2
Y∼X+{Z}) ∆R2

Y∼Z+{X})
1
3 (∆R2

Y∼X+{W+V }+
1
3 (∆R2

Y∼Z+{W+V }+

Three independent variables ∆R2
Y∼X+{W+Z}+ ∆R2

Y∼Z+{W+X}+

∆R2
Y∼X−{V+Z}) ∆R2

Y∼Z+{V+X})

Four independent variables ∆R2
Y∼X+{W+V+Z} ∆R2

Y∼Z+{W+V+X}

ated with each independent variable and determining im-
portance by comparing those average values.

Conditional Dominance

A less stringent dominance designation between indepen-
dent variable pairs than complete dominance is called con-
ditional dominance. Conditional dominance relaxes the
stringency of the comparisons across pairs of independent
variables by evaluating how each independent variable
contributes to the R2, on average, when they are included
in every relative position in the model.

By comparing averages of R2 increments by relative
position, conditional dominance allows some sub-models
with higherR2 increment values at a specific inclusion or-
der for X compared to Z to compensate for sub-models
with lower R2 increment values for X compared to Z at
that same order. This compensatory property of the av-
erages by inclusion order makes conditional dominance a
less stringent criterion andmakes it more likely to obtain a
dominance designation.

The average increments to the R2 used to determine
conditional dominance are known as conditional domi-
nance statistics. Because each independent variable can be
included at any relative position in the model, in a model
with p independent variables, each independent variable
will have p conditional dominance statistics to compare to
another independent variable. Extending on Table 1, de-
termining conditional dominance betweenX andZ would
involve all four different conditional dominance statistics,
the computation of which are outlined below in Table 2.

The ∆ used in Table 2 indicates that the R2 value is an
increment made by the focal independent variable beyond
the subset of non-focal independent variables in braces.
Note that the conditional dominance statistics use R2 in-
crements from subsets that include all other non-focal in-
dependent variables. Hence, conditional dominance com-
parisons between two independent variables will include
increments from the independent variable against which
they are being compared in their average value. This is a

noteworthy difference from complete dominance designa-
tions that do not use sub-model R2 values that include the
independent variable against which the focal independent
variable is being compared.

The process of computing conditional dominance statis-
tics forX with i independent variables in the sub-model is
defined as in Equation 2 below.

Ci
X =

∑ki

g=1 ∆R2
X+{og}

kg
(2)

where ki is the number of combinations of size i given p in-
dependent variables and og is a distinct subset of the p− 1
independent variables of size i− 1 that are included in the
sub-model. Determining conditional dominance between
X and Z proceeds as in Equation 3.

X Dc Z if p =

p∑
i=1

{
if Ci

X > Ci
Z then 1

else 0 (3)

where Dc is a designation indicating conditional domi-
nance ofX over Z . WhenX does not completely but does
conditionally dominate Z ,X is generally better than Z for
explaining variance in Y given the underlying linear re-
gressionmodel irrespective of inclusion order in themodel.
Conditional dominance thus suggests thatX ’s explanatory
value is generally higher than Z when considering their
values at the same inclusion orders.

Conditional dominance between an independent vari-
able pair is less stringent than complete dominance but can
still be a difficult designation tomeet inmodelswith a great
deal of between-independent variable overlap. As a result,
a third dominance designationwas developed that involves
yet another averaging step as is described in the next sec-
tion.

General Dominance

The least stringent dominance designation between inde-
pendent variable pairs is called general dominance. Gen-
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Table 3 Example General Dominance

Average withX Average with Z
1
4∆R2

Y∼X+{∅}+
1
4∆R2

Y∼Z+{∅}+
1
12 (∆R2

Y∼X+{W}+
1
12 (∆R2

Y∼Z+{W}+

∆R2
Y∼X+{V }+ ∆R2

Y∼Z+{V }+

∆R2
Y∼X+{Z})+ ∆R2

Y∼Z+{X})+
1
12 (∆R2

Y∼X+{W+V }+
1
12 (∆R2

Y∼Z+{W+V }+

∆R2
Y∼X+{W+Z}+ ∆R2

Y∼Z+{W+X}+

∆R2
Y∼X−{V+Z})+ ∆R2

Y∼Z+{V+X})+
1
4∆R2

Y∼X+{W+V+Z}
1
4∆R2

Y∼Z+{W+V+X}

eral dominance further relaxes the stringency of the com-
parisons between independent variable pairs by changing
the focus from comparing average increments grouped by
the number of independent variables in a sub-model to the
arithmetic average of these averages. General dominance
is then the average of the conditional dominance statis-
tics for each independent variable. By averaging over con-
ditional dominance statistics, general dominance allows
higher contributions at specific numbers of independent
variables in the sub-model to compensate for lower con-
tributions at other numbers of independent variables in
the sub-model. The values generated by general dominance
will, in almost all cases, produce a dominance designation
between the pair of independent variables.

The averaged conditional dominance statistics com-
puted for determining general dominance are known as
general dominance statistics. Table 3 shows the general
dominance statistic computation for X and Z . This com-
putation incorporates all the values in Table 2 but summed
into a single statistic.

As is implied by the computations in Table 3, general
dominance statistics are a weighted average of the individ-
ual increments to theR2s and is defined forX in Equation
4.

CX =

∑p
i=1 C

i
X

p
(4)

Using the general dominance statistics computed in Equa-
tion 4, determining whetherX generally dominatesZ pro-
ceeds as in Equation 5.

X Dg Z if CX > CZ (5)

where Dg is a designation indicating general dominance
ofX overZ . WhenX does not completely or conditionally
but does generally dominate Z , X is generally better than
Z for explaining variance in Y given the underlying linear
regression model but is sensitive to inclusion order in the
model. General dominance thus suggests that X ’s predic-
tive usefulness is, on average, better than Z and that it is

more important when not directly considering the effects
of independent variable inclusion order.

Note that the general dominance statistic values, when
summed across the p independent variables, equals the
sub-model R2 when all p independent variables are in-
cluded. This is a useful feature of the general domi-
nance statistics that, as has been discussed in other re-
views (Grömping, 2007; Johnson&LeBreton, 2004), ties this
method to earlier work on independent variable impor-
tance which focused on the decomposition of theR2 statis-
tic. It is worth noting that, in this previouswork, the closely
related partial η2 metricwas used to develop ametric to de-
compose theR2 that developed into the general dominance
statistic (see Lindemanet al., 1980; Budescu, 1993). The par-
tial η2, also known as the squared semi-partial correlation,
is an alternative formulation of the∆R2 from the linear re-
gression model. By itself, the partial η2 for an independent
variable is tantamount to the conditional dominance statis-
tic for when the subset size is p. When combined with all
combinations of covariates for a specific independent vari-
able, the partial η2 values can be used in the same way as
∆R2 to generate all dominance statistics and comparisons.

In the sections above, I have provided a brief discussion
of the conceptual development of the DAmethod, reviewed
how DA statistics are computed, and reviewed how impor-
tance for independent variables is determined. In the sec-
tion below, I transition fromabroad outline of DA to amore
targeted discussion on application of DA to count regres-
sionmodels. The focus of the next section is on a discussion
of count regression model-based DA with attention to con-
sidering which fit statistic should be used when applying
DA to count regression models.

ApplyingDominanceAnalysis to CountRegressionMod-
els

A complication of applying DA to count regression models
is that the literature on DA has generally focused on how
to apply the method to the linear regression model with
the variance explainedR2 as a fit statistic. Given the semi-
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continuous nature of count dependent variables and that
the predicted values from count regressionmodels are typ-
ically in the form of a non-negative rational number, it is
possible to use the explained variance R2 when determin-
ing importance with a count regression model.

Although the variance explained R2 could be applied
to count regression models, there are good conceptual rea-
sons to choose another fit statistic. In the section below, I
provide a rationale for the choice of a different metric, the
deviance R2 or R2

DEV , that better reflects the criteria un-
derlying how count regression models fit to data.

Count Regression Fit Statistic: DevianceR2

Statistical models are fit using information about the data
as applied to a probability distribution to find their most
likely parameter values. A fit statistic applied to evaluating
the fit of a statistical model to data is alsomost useful when
the computation of the statistic is conceptually alignedwith
themodel that it is being used to evaluate. Thus, choosing a
fit statistic that matches the underlying fitting criterion of
statistical model’s probability distribution will best reflect
how the model fits to data.

Consider that the explained variance R2 is computed
as

∑
(Ȳ − Ŷ )2/

∑
(Y − Ȳ )2 = SSmodel/SStotal or the ra-

tio of the variance of the predicted values (i.e., the model
sums of squares; SSmodel) over the variance of the pre-
dicted values (i.e., the total sums of squares; SStotal). The
linear regression model is based on a Normal probability
distribution and uses least-squares as its fitting criterion.
Least squares seeks to minimize SSresidual =

∑
(Y − Ŷ )2

or the residual sums of squares between the predicted val-
ues from the linear regression model and the observed de-
pendent variable. The SSresidual = SStotal − SSmodel

and thus the explained variance R2 can also be computed
as 1 − SSresidual/SStotal. The explained variance R2 is
then closely tied to the linear regression model and its fit-
ting criterion. It is important to note that the computation
used to obtain the SSresidual is also known as the deviance
(DEV ) for the Normal distribution as it describes how the
model’s predictions deviate from observed values (McCul-
lagh & Nelder, 2019). The SSresidual is thus aDEVmodel or
a model deviance for the linear regression model.

The Poisson regression follows the Poisson distribu-
tion and the negative Binomial regression follows the neg-
ative Binomial distribution–both of which are probabil-
ity distributions meant for discrete data like non-negative
counts. For example, the deviance for Poisson regression
and a special case of the negative Binomial regression is∑

Y ln(Y/Ŷ )−(Y −Ŷ ).1 Note that this Poisson regression-

focused deviance value differs from the Normal distribu-
tion deviance in that it tends to penalize underprediction
more than overprediction. The extra penalties assigned to
underprediction are consistent with the truncated, semi-
continuous nature of count dependent variables in that
they cannot go below0 and, thus, tend to be penalizedmore
heavily toward the conceptual lower bound of the distri-
bution. By contrast, Normal distribution-based deviance
has no such constraint and penalizes discrepancies from
observed values equally in either direction.

In considering a reasonable fit statistic to apply to count
regression models given the differences between the un-
derlying fitting criteria for the linear regressionmodel and
count regression models, Cameron and Windmeijer (1996)
devised the R2

DEV or deviance R2 outlined in Equation 6
below.

R2
DEV = 1− DEVmodel

DEVnull
(6)

where DEVnull is the model deviance for an intercept- or
mean-only model and is equivalent to SStotal for an lin-
ear regression model. TheR2

DEV is then a direct extension
of the explained variance R2 but is more flexible in that it
can be applied to count regressionmodelswhen using their
deviance computations. I recommend the use of R2

DEV

withDEVmodel andDEVnull values that are based on each
count regression model’s fitting criteria as a fit statistic for
DA.

The R2
DEV is a conceptually more reasonable choice

than the explained varianceR2 for count regressionmodel-
based DA as, if a researcher applies the explained vari-
ance R2 to a count regression model, they are applying
a fit statistic that uses a deviance computation intended
for the linear regression model to count regression mod-
els with very different fitting criteria. Having outlined a
rationale for the choice of a specific fit statistic to use when
applying DA to count regression models, in the sections to
follow I transition to an example application of the pro-
posed methodology. The sections below briefly outline the
data generated for this illustration, describe the models es-
timated from the data, and also describe how DA designa-
tions were determined.

Count Regression Model-based Dominance Analysis:
An Analytic Example

The goal of this section was to provide an example analy-
sis using the recommendedR2

DEV count regressionmodel-
based DA methodology. This example was intended to be
useful as a guide for researchers and analysts interested
in applying this method to count regression models. In the
section below, I began by describing how I generated data

1This special case is the negative Binomial regression estimated using a quasi-likelihood method. Maximum likelihood methods require a more
complex form given the estimation of the α/δ parameter.

2An example using a negative Binomial regression is available in the online supplement.
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Table 4 Descriptive Statistics

Standard Correlations
Variable Mean Deviation ability motivation tact skill solutions
ability −0.0355 1.1853 1.0000 0.4168 0.1446 0.2180 0.4175
motivation −0.0261 1.4494 0.4168 1.0000 0.1958 0.2850 0.3592
tact −0.0056 1.5480 0.1446 0.1958 1.0000 0.3295 0.2913
skill 0.0144 1.9211 0.2180 0.2850 0.3295 1.0000 0.3726
solutions 0.9940 1.0082 0.4175 0.3592 0.2913 0.3726 1.0000

for the example based on a Poisson regression model2. The
methods used to generate these data were not directly rel-
evant to the goals of this article and, as such, have been in-
cluded in an online supplement. Please note that the online
supplement outlines the code to generate the data and de-
velopment perspective behind the generation of these data
in great detail. The section below was focused primarily
on describing the conceptual nature of the data so that the
reader can follow along prior to transitioning to reporting
on the primary analysis.

Data Generation

The fabricated data simulated and discussed in this work
is related to a fabricated study on the number of solu-
tions a student provides to personal relationship problem
given 20 minutes to respond that met minimum criteria
for quality of reasoning. The data generated for this study
were collected from 6,780 simulated students. The study
researchers expected that the number of personal relation-
ship problem solutions reported by each simulated student
would be Poisson distributed. The data used in this section
were simulated from a single set random number draws
with a single random seed for reproducibility. Themethod-
ology underlying the simulation is described further in the
online supplement.

The four independent variables used in the fabricated
data were four survey scales that were normed such that
the mean of each was roughly 0 and standard deviation
was roughly 1. The first scale used to predict the num-
ber of solutions reported was a cognitive ability, or intel-
ligence, scale reflecting the respondent’s cognitive capacity
and skills. This scale is denoted ability in the results. The
second survey scale was solutionmotivation or the respon-
dent’s motivation to try to resolve the personal relation-
ship problem. This scale is denoted motivation in the re-
sults. The third survey scalewas tactfulness or the extent to
which the respondent is sensitive to social considerations.
This scale is denoted tact in the results. The fourth survey
scale was rhetorical skill or the skill withwhich the respon-
dent can construct a convincing argument. This scale is de-
noted skill in the results.

The means, standard deviations, and correlations be-

tween all four independent variables and two dependent
variables are reported below in Table 4.

Note that, on average, each of the simulated respon-
dents produced a solution in the 20-minute period under
study. Table 4 also shows that the variance of the number
of solutions produced was consistent with its expected un-
derlying Poisson distribution. Specifically, solution produc-
tion had a variance of 1 which closely matches the mean as
is assumed of the Poisson distribution.

Regression Results

The solution production dependent variable was Poisson
distributed by design and could be modeled using a Pois-
son regression. The Poisson regression results using the
four survey scale independent variables to predict solution
counts were reported in Table 5. Table 5 included coeffi-
cients (β), standard errors (σβ), 95% confidence intervals,
and exponentiated coefficients or IRRs (eβ).

Table 5 showed that each of the independent variables
had a positive effect on the number of solutions produced
and each appeared to be statistically significant (at the p <
.05 level) as was implied by the confidence intervals not in-
cluding the value of 0.

In terms of coefficient magnitude, ability had the
largest effect on the rate of solution production. Each stan-
dard deviation increase in the ability scale led to a 27.5%
increase in the solutions produced given the IRR value.
skill obtained the second-largest effect on solution produc-
tion rates. Each standard deviation increase on the skill
scale led to a 12.3% increase in the number of solutions
produced given its IRR. motivation and tact obtained the
smallest increases in solution production. motivation re-
sulted in a 11.4% increase and tact a 10.5% increase in the
number of solutions produced given their IRRs.

The IRR value for the model intercept represented the
expected number of solutions produced when all indepen-
dent variables were at their means of 0. Because each in-
dependent variable had a mean of 0, the model intercept
represented the mean number of solutions produced. Note
that the .8601 value obtained was similar to the overall
mean of solutions in Table 4. This .8601 value could also
used as the baseline rate of solutions produced. For in-
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Table 5 Poisson Regression Predicting Relationship Problem Solutions Produced

95% Confidence Interval
Variable β σβ Low High eβ

ability 0.2431 0.0114 0.2208 0.2655 1.2753
motivation 0.1081 0.0095 0.0896 0.1267 1.1142
tact 0.0999 0.0083 0.0835 0.1162 1.1050
skill 0.1158 0.0069 0.1024 0.1293 1.1228
Intercept −0.1507 0.0138 −0.1780 −0.1237 0.8601

stance, the expected number of solutions produced for re-
spondents who had an ability score that was one standard
deviation above the mean, but had the mean value on all
other independent variables, was .8601 ∗ 1.2753 = 1.0969
or just above 1 solution produced. As opposed to report-
ing on single values as I have above, plotting of marginal
means across levels of different independent variables
adds value to the model interpretation (see Rönkkö et al.,
2022, for a similar perspective) andmore clearly depicts the
multiplicative effects produced by count regression mod-
els. Although I did not includemarginal means plots in this
text for brevity, such plots were reported in the online sup-
plement for interested readers.

The Poisson regression modeling result reported in Ta-
ble 5 showed that all four independent variables had non-
trivial predictive effects on solution production and, in ad-
dition, obtained different coefficient magnitudes. These
different coefficient magnitudes, in combination with the
different variances observed in Table 4, indicated likely dif-
ferences in the importance of each independent variable
for explaining solution production.

In the section below, I transition to the focal analysis of
this work where I determined the importance of each inde-
pendent variable for predicting solution production using
DA. In this way, the section below provides an empirical ex-
ample that applied the designation and computational for-
mulas in Equations 1, 2, 3, 4, and 5 to the Poisson regression
model in Table 5.

Dominance Analysis Results

The DA designations and statistics used in this article were
computed using the collection of model fit statistics rep-
resenting all possible combinations of independent vari-
ables included and excluded as sub-models. The four sur-
vey scale independent variables used in this article resulted
in a total of 24 = 16 sub-models estimated from the data.
The results from all sub-models were reported below in Ta-
ble 6 omitting the sub-model with no predictors as it was
not informative (i.e., produced a value of 0).

Table 6 showed that ability tended to obtain larger
R2

DEV values. Thus, ability was likely to be an important
independent variable consistent with its large coefficient

size. The R2
DEV values associated with the three other

independent variables showed no easy to discern pattern
and,moreover, did not as clearly follow the coefficient sizes
reported in Table 5. As such, the information that could
be obtained from the dominance analysis designations was
likely would be useful, not only for confirming ability’s im-
portance, but also for clarifying themore complex patterns
of interrelations between the other three independent vari-
ables.

The first dominance designation evaluated using the
results in Table 6 was complete dominance. ability gen-
erally had larger R2

DEV values than other variables and,
when using Equation 1 to determine complete dominance
over to the other three independent variables, was shown
to completely dominate all three. Thus, ability was the
undisputed top independent variable predicting solution
production irrespective of independent variable inclusion
ordering in the model.

The complete dominance relationships between the re-
maining variables was far less clearly defined. For in-
stance, skill completely dominated tact but did not com-
pletely dominate motivation. motivation and tact also
had no complete dominance designation. The failure
of these independent variable comparisons to have had
complete dominance designations prevented developing a
clear hierarchy between the last three variables as skill
was a better predictor than tact irrespective of inclusion
order, but no such determination could bemade of the rest
of the comparisons. Thus, skill was likely the second-best
predictor but it required use of one of the expanded domi-
nance designations to confirm that was the case.

In order to rank the remaining independent variables,
the conditional dominance statistics for all the survey scale
independent variables were computed using Equation 2.
The results of the conditional dominance statistic compu-
tations were depicted graphically in Figure 1 below. For
this Figure, the y-axis was depicted on a logarithmic scale
to improve legibility nearer values where the independent
variable was included last (i.e., subset sizes of 4).

I used a graphical format to depict the conditional dom-
inance statistics’ values as this formatmore clearly conveys
the dominance designations between independent vari-
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Table 6 R2
DEV by Sub-model

Model R2
DEV

solutions ∼ ability 0.1524
solutions ∼ motivation 0.1131
solutions ∼ tact 0.0744
solutions ∼ skill 0.1219
solutions ∼ ability +motivation 0.1887
solutions ∼ ability + tact 0.2006
solutions ∼ ability + skill 0.2248
solutions ∼ motivation+ tact 0.1584
solutions ∼ motivation+ skill 0.1844
solutions ∼ tact+ skill 0.1502
solutions ∼ ability +motivation+ tact 0.2266
solutions ∼ ability +motivation+ skill 0.2442
solutions ∼ ability + tact+ skill 0.2459
solutions ∼ motivation+ tact+ skill 0.2050
solutions ∼ ability +motivation+ tact+ skill 0.2624

ables thandoes a table of values. In the graphic, the orienta-
tion of each independent variable’s conditional dominance
statistic trendline relative to other independent variables’
trendlines represented the information conveyed by Equa-
tion 3. Specifically, when an independent variables’ condi-
tional dominance trendline was always above another in-
dependent variable’s conditional dominance trendline, the
independent variable that was above conditionally domi-
nated the one below.

The trendlines in Figure 1 confirmed the complete dom-
inance results in that ability’s trendline was above the
trendlines for the other three independent variables indi-
cating that it conditionally dominated each of them. Simi-
larly, skill’s trendline was above tact’s trendline consistent
with the complete dominance results. In addition, skill’s
trendlinewas abovemotivation’s trendline indicating that
it conditionally dominatedmotivation. Although skill did
not explain more information thanmotivation in all com-
parable models (see solutions ∼ motivation + tact ver-
sus solutions ∼ tact + skill’s in Table 6), when con-
sidering the average information explained given inclu-
sion order, skill produced bigger increments to theR2

DEV

than did motivation levels. As such, skill’s dominance of
motivation was model dependent, but not generally de-
pendent on independent variable inclusion order.

The last two independent variables did not result in
conditional dominance designation asmotivation failed to
conditionally dominate tact given tact’s conditional dom-
inance statistic when included last in the model (i.e., at
subset size 4) was larger than motivation’s statistic when
included last in the model. These conditional dominance
results further reinforce the idea that attempting to rank
these independent variables is not straightforward and

their contributions to prediction depend on the order of
their inclusion in the model.

Given that no complete or conditional dominance des-
ignations were possible for comparing motivation with
tact, I proceeded to evaluate the general dominance des-
ignations between these variables. The general dominance
statistics for each survey scale independent variable was
computed using Equation 4 as reported in Table 7.

Evaluating the general dominance designations deter-
mined by the general dominance statistics in Table 7 using
Equation 5 again showed that ability dominated each other
variable and that skill dominated tact and motivation.
A useful addition that general dominance designations
added was in determining general dominance between
motivation and tact. The general dominance designa-
tions then added to the previous dominance results in that
they were the final component needed to construct an im-
portance hierarchy among the independent variables. In
combination, the results across all three dominance des-
ignations resulted in a clear rank ordering of the survey
scale independent variables in predicting solutions pro-
duced: ability was most important followed by skill, then
motivation, and tact was least important.

In conclusion, the DA results have built on and ex-
tended the coefficient reporting in Table 5 by adding ad-
ditional information about each of the survey scale inde-
pendent variables’ predictions. In particular, the domi-
nance results offered conclusive evidence for differences
between independent variables in their ability to explain
variation or information in the solution production vari-
able. The DA results supported the inference about the pre-
dictive usefulness of ability given its large IRR value. The
DA results showed that, regardless of the order in which
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Figure 1 Conditional Dominance Statistics

Table 7 General Dominance Statistics

Variable General dominanceDg

ability 0.0965
motivation 0.0560
tact 0.0399
skill 0.0700

ability might be included in the model, it always produced
the biggest increment to theR2

DEV . In addition, abilitywas
associated with nearly one-third (i.e., .0965/.2624 ≈ 1/3)
of the explained information in solutions produced. The
DA results also provided useful contextualization of skill,
motivation, and tact. These three independent variables
obtained similar IRR values, each within .01 of one an-
other, which made their dominance hierarchy less easy
to guess at the outset. The dominance designations ob-
tained showed that the hierarchy between these variables
was indeed more nuanced as skill completely dominated
only tact and conditionally dominated motivation. More-
over, motivation only generally dominated tact. The DA
results then provided useful additional information to a re-
searcher about the differences in strength of prediction be-
tween these independent variables that would not be pos-
sible to have obtained only with their IRR values.

Discussion

In this text, I have recommended a methodology for deter-
mining the relative importance of independent variables
in count regression models. I recommend the DA method-
ology as an approach that is comprehensive in the infor-
mation it provides about independent variable’s predic-
tion and, when using an appropriate fit statistic such as

the R2
DEV , can provide information analogous to the ex-

plained varianceR2 using the linear regression model.
I have also walked the reader through an example data

analysis applying Poisson regression to simulated data. In
walking the reader through this example, I use the recom-
mended DA with R2

DEV fit statistic approach to evaluate
the relative importance of four independent variables. This
walk through of the DA has focused on the utilization of dif-
ferent levels of DA designation stringency and how these
different levels offer different weights of evidence for the
importance of the independent variables over one another
in predicting the count dependent variable.

By combining these two topics, this article picks up
where Blevins et al. (2015) had left off by recommending
the use of DA as a postestimation method to better under-
stand count regression model predictions. Specifically, I
recommend consulting Blevins et al’s work when choos-
ing to implement a count regression model as their deci-
sion flowchart can help you to choose themost appropriate
count regression model given the nature of your data and
follow the estimation of the count regression model with
a DA to better contextualize the predictions made by each
independent variable.

In this text I have discussed many key considerations
for researchers contemplating implementing DA in using
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count regression models, but I acknowledge that several
relevant topics have not been included. Before closing, I
discuss some noteworthy limitations and additional exten-
sions of this work.

Limitations and Future Directions

In this work, I use only simulated data in the empirical
examples. The use of simulated data was an intentional
choice to avoid the need to work through many of the deci-
sion points outlined by Blevins et al. (2015) related to the se-
lection of an appropriate count regressionmodel as I know
the dependent variables are distributed as Poisson or neg-
ative Binomial. I acknowledge that the use of the simulated
data adds additional complexity to following alongwith the
methodology in the online supplement. That said, all the
procedures used to simulate the various count dependent
variables are fully replicable, well-documented, and avail-
able as a markdown that can be used by interested readers
with a working knowledge of R (R Core Team, 2022). In ad-
dition, I acknowledge that only reporting the results from
the Poisson regression models is a limitation. The Poisson
regression and negative Binomial regression results were
very similar and, in my view, including the negative Bino-
mial regression results would not meaningfully add to the
manucscript’s narrative. Although the negative Binomial
regression model’s results are not in the text, I have in-
cluded the negative Binomial regression results in the sup-
plement for interested readers.

Prior work on DA has recommended that researchers
use bootstrapping to estimate the reproduce-ability of dom-
inance designations (Azen & Budescu, 2003). Bootstrap-
ping the count regression model-based dominance statis-
tics and designations is also possible but was not examined
in the presentwork. Although I havenot provided an exam-
ple of bootstrap reproduce-ability in this work, evaluating
the bootstrap reproduce-ability of dominance designations
is a useful and important practice. Evaluating reproduce-
ability allows researchers assess a level of confidence that
specific designations between independent variables will
hold under resampling. Thus, like standard hypothesis test-
ing, evaluating bootstrap reproduce-ability can allow a re-
searcher to better determine whether a set of dominance
designations between independent variables in a count re-
gression model are likely to generalize beyond the sample
at hand.

In addition, zero inflation is commonly observed of
count dependent variables. Zero inflation is a condition
where the distribution of the count dependent variable has
more 0s than would be expected given a standard Poisson
or negative Binomial distribution and requires the use of
specialized models (e.g., Blevins et al., 2015; Bhaskar et al.,
2023). Cameron andWindmeijer (1996) discuss the applica-

tion of the R2
DEV to zero-inflated count regression models

and, thus, a DAmethodology based on the same general ap-
proach as discussed above could be applied to zero-inflated
count regression models. One additional complication that
arises with considering how to determine importance with
zero-inflated count regression models is that these mod-
els encompass two predictive processes. The first process
is the standard count generating process whereby inde-
pendent variables increase or decrease dependent variable
counts. The second is an "opt out" process whereby inde-
pendent variables increase or decrease the likelihood of the
count being 0. These two processes add complexity in that
they canbemodeled differently. Any one independent vari-
able can predict the count generating process, the opting
out process, or both. When using a DA with zero-inflated
count regressionmodels, I recommend the researcher con-
sider whether they are truly interested in determining the
importance of independent variables or are actually in-
terested in determining the importance of parameter esti-
mates (Luchman et al., 2020). The key difference between
the two perspectives is that, if one independent variable
is included in both the count and opt out process, the in-
dependent variable approach would ascribe the indepen-
dent variable a single set of dominance statistic designa-
tions whereas the parameter estimate perspective would
break the designations into one focused on the indepen-
dent variable’s effect in the count process and, separately,
the independent variable’s effect in the opt-out process.

Conclusion

DA is a useful post-estimation methodology for determin-
ing the importance of independent variables in statistical
models such as count regression models. This article has
provided a recommendedmethodology for extendingDA to
count regressionmodels and offered an extensive data ana-
lytic example focusing on the interpretation of DA statistics
and designations with simulated data. In combination, the
conceptual discussion of DA and count regression models
when paired with the empirical example in this paper, will
provide scientists with useful tools they can use to better
understand the results of count regression models they es-
timate in support of research questions with count data.
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