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Local decorrelation for error bars in time series
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Abstract Time series and electroencephalographic data are often noisy sources of data. In ad-
dition, the samples are often small or medium so that confidence intervals for a given time point
taken in isolation may be large. Decorrelation techniques were shown to be adequate and exact for
repeated-measure designs where correlation is assumed constant across pairs of measurements.
This assumption cannot be assumed in time series and electroencephalographic data where corre-
lations aremost-likely vanishingwith temporal distance between pairs of points. Herein, we present
a decorrelation technique based on an assumption of local correlation. This technique is illustrated
with fMRI data from 14 participants and from EEG data from 24 participants.
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Introduction

Time series and electroencephalographic (EEG) data rep-
resent collections of information organized temporally.
These data often involve repeated measures within a
within-subject design. In such designs, measurements are
taken multiple times under different conditions, which
may be temporally organized, such as in clinical pre-
treatment and post-treatment studies. However, repeated
measurements are not always conducted in a time-related
order. For instance, in experiments manipulating the dif-
ficulty of puzzle-solving tasks, the difficulty levels do not
necessarily increase over time, i.e. the sequence of mea-
surements can be counterbalanced across participants or
randomized.

Within-subject designs are typically recommended due
to their higher statistical power (e.g. Field, 2009; Howell,
2010; Tabachnick et al., 2013). However, traditional, also
called standalone, confidence intervals do not account for
this increased power, which translates to improved preci-
sion in the estimates. In seminal work, Loftus and Masson
(1994) proposed an adjustment to the width of error bars
to reflect this enhanced precision. The source of this ad-
ditional precision is to be found in the correlation among
repeated measures (Cousineau, 2019). Positive correlation
indicates that participants’ scores exhibit regularity (e.g.,
individuals with high scores on one measure tend to have

high scores on othermeasures). This variation canbequan-
tified using, for example, the between-subject variance in
the context of ANOVAs. It can also be eliminated, as inter-
participant differences are frequently of no theoretical in-
terest (Cousineau, 2005; Morey, 2008). The remaining vari-
ance is then attributed to the factor(s) of interest (here the
repeated-measure factor or factors). By discarding a por-
tion of the uncertainty, the effect size ismore narrowly esti-
mated, resulting in greater precision (Jané et al., 2024). This
approach is sometimes called decorrelation.

Another limitation of standalone confidence intervals
is their focus on the precision of a single point in isolation.
They are therefore unable to assess the relative position
of that point to other points. Yet, researchers are most of
the time interested in comparing conditions to other condi-
tions, something that cannot be done with standalone con-
fidence intervals. Goldstein and Healy (1995) proposed to
adjust the width of the confidence intervals to reflect this
objective of performing pairwise comparisons. Such ad-
justment was called a difference adjustment in subsequent
works as it allows examining the difference between con-
ditions (Baguley, 2012). Difference-adjusted confidence in-
tervals are wider, by 41% (width increased by

√
2 ≈ 1.41)

when homogeneity of variance is assumed.
To implement the gain in precision within confidence

intervals, Cousineau (2017) proposed the concept of ad-
justed confidence intervals. These adjustments account for
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the impact of the experimental design (within-subject vs.
between-groups) and the intended purpose of the confi-
dence intervals (e.g., for pairwise comparisons or compar-
isons to hypothesized values determined a priori). Addi-
tionally, they consider the sampling process and the pop-
ulation size when it is not infinite. In this framework,
standalone confidence intervals are relevant for between-
group designs when performing comparisons to an a pri-
ori value from a sample obtained with simple randomized
sampling out of a population of infinite size.

All these precepts that apply to the average of condi-
tions were extended in superb (summary plots with ad-
justed error bars) to various other descriptive statistics (Co-
hen’s d, proportions, frequencies, etc.; Cousineau et al.,
2021; also see Laurencelle & Cousineau, 2023a, 2023b).

Because time series and EEG data can be seen as re-
peated measures, it would be sensible to use the decorrela-
tion technique. As demonstrated by Cousineau (2019), the
simplest form of decorrelation involves adjusting the confi-
dence interval by multiplying its width by

√
1− r where r

is a measure of correlation between pairs of repeated mea-
sures. This approach implicitly assumes that the correla-
tion is stationary over time, meaning that pairs of contigu-
ous measurements have the same correlation as pairs of
measurements separated by longer time intervals. When
coupled with the assumption of homogeneity of variances,
this structure is known as compound symmetry (Winer et
al., 1991).

Sadly, for time series, the assumption of stationary cor-
relation between pairs of measurements is often question-
able. In the following section, we expand on compound
symmetry and generalize the structure to one with corre-
lations decayingwith lag, also called autoregressive covari-
ance structures. Under autoregressive covariance, we pro-
pose using a local decorrelation technique. This technique
is described in detail and illustrated with simulated data.
Subsequently, we demonstrate the generality of this tech-
nique using two real datasets.

Compound symmetry and beyond

In a repeated measures design with pmeasures, the scores
are conceived as being sampled from a p-dimensional mul-
tivariate distribution. When normality is assumed, the dis-
tribution is a multinormal distribution. This theoretical
distribution is characterized by a location vector µ and a
variance-covariance matrixΣ (Winer et al., 1991; Kincaid,
n.c.). When the scores are independent from each other,
the covariance matrix has only variances along the main
diagonal and zero elsewhere, a structure sometimes called
variance components (VC). An example with 4 variables

would be

ΣV C =


σ2
1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

 (VC)

where σ2
i is the variance of the ith measurement. If we as-

sume that all the variances are identical, we additionally
are in a situation of homogeneity of variances. The sce-
nario of variance components plus homogeneity is actually
the structure assumed in between-group analyses, and the
multinormal distribution simplifies to normal distributions
for each measurement.

The compound symmetry scenario assumes homogene-
ity of variance as well as homogeneity of covariance be-
tween the variables, which results in non-null entries in the
off-diagonal cells.

ΣCS =


σ2 ρσ2 ρσ2 ρσ2

ρσ2 σ2 ρσ2 ρσ2

ρσ2 ρσ2 σ2 ρσ2

ρσ2 ρσ2 ρσ2 σ2

 (CS)

In this scenario, the parameter ρ is the correlation in
the population between pairs of variables. A simple estima-
tor of ρ is obtain by calculating the mean pairwise correla-
tion; Laurencelle and Cousineau (2023b) suggested a mea-
sure based on Cronbach’s α; for two measures, the exact
measure of correlation is the rectified Pearson correlation
(Cousineau & Goulet-Pelletier, 2021).

The autoregressive structure, formally called the au-
toregressive covariance of order 1 (sometimes noted
AR(1)), is characterized by an amount of correlation that
declines exponentially as we move away from the main di-
agonal. Oneway to achieve this is to raise the correlation to
increasingly larger power, ρ1, ρ2, ρ3, etc. as we move away
from the main diagonal, resulting in

ΣAR(1) =


σ2 ρ1σ2 ρ2σ2 ρ3σ2

ρ1σ2 σ2 ρ1σ2 ρ2σ2

ρ2σ2 ρ1σ2 σ2 ρ1σ2

ρ3σ2 ρ2σ2 ρ1σ2 σ2

 (AR1)

There exists other covariance structures including the
spatial power structure where the correlation has a power
related to the exact duration separating themeasurements.
This is sensible when the lag between time points can be
expressed quantitatively (in days, for example).

To determine which covariance structure fits best, for-
mal tests can be performed (e.g., Keselman et al., 1998).
Choosing a covariance structure is a common requirement
form mixed models (e.g., Howell, 2010). However, for
very large covariance matrix (as can be the case with long
EEG stream composed of hundreds or thousands of voltage
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Table 1 ANOVA results for the data of the first illustration shown in Figure 2

Effect df SS MS F p η2p
Within group

Time (T ) 25 122, 780.6 4, 911.23 25.353 <.001 0.459
Error (S × T ) 600 116, 182.0 193.63

Between group
Error (e) 24 28, 270.1 1, 177.92

Note. As expected, theWiner test of compound symmetry is highly significant (W = 3495, χ2(349) = 2203, p < .001)
as well as the Mauchly test of sphericity (M = 1902.8, χ2(324) = 1227.8, p < .001; Huynh-Feldt ε = .225).

potential measurements), the covariances away from the
main diagonal rapidly become dominated by noise. Also,
the above structures predict zero correlation for distant
measurements which is doubtful as the participants may
change over time, but will certainly keep some character-
istics. Thus, distant covariances do not bring much infor-
mation and consequently, formally testing for covariance
structure is likely to be little informative.

Herein, we adopt a more pragmatic view where it is
assumed that close-by measurements have informative co-
variance but that their relevance declines rapidly. Conse-
quently, we consider the average correlation of the other
measurements to a given measurement, weighted by their
distance to this measurement.

To weight the correlations, we chose a Gaussian func-
tion, that is, weights that are given by the Gaussian equa-
tion:

Wσ(d) =
e−d2/(2σ2)

√
2πσ

;

Wσ(0) = 0

(1)

in which σ is the radius factor of the weights and d is the
distance, i.e., the time lag between twomeasurements. The
top of the Gaussian is replaced by 0 as the correlation of a
variable with itself does not reflect the correlations in the
population. For example, using a radius of 1, the weights,
for distances varying from -5 to +5 are

0.0000, 0.0001, 0.0044, 0.0540, 0.2420, 0.000, 0.2420, 0.0540, 0.0044, 0.001, 0.000

The weighted average correlation to the ith time point,
noted rLD herein, is obtained with

rLD =

p∑
j=1

Wσ(i− j)ri,j

p∑
j=1

Wσ(i− j)

(2)

where p is the number of time point, ri,j is the correlation
between the ith and the jth measurements, and i− j is the
lag between the two time points.

The resulting weighted average correlation rLD is then
used to compute the correlation-adjusted confidence inter-
vals for the ith condition,

CI = M ± SE
√
2
√
1− rLD × tn−1(γ) (3)

where M is the mean of measurements at a given time
point,SE, the standard error, is givenby the standard devi-
ation of the same measurements divided by

√
nwith n the

number of subjects, and tn−1(γ) is the t critical value at the
confidence level γ (typically 95%) with degree of freedom
n− 1.

A first illustration

To illustrate the procedure, we generated simulated data.
The data were meant to represent annual variation in a
certain measure performed biweekly (there are therefore
26 time measurements per participant) from 24 simulated
participants. To that end, the population grand mean was
100 units modulated by a sine wave whose amplitude was
one standard deviation above and below the grand mean.
We examine two simulated datasets, the first having an au-
toregressive covariance structure, the second a compound
symmetry structure. While the first scenario is more plau-
sible for time series data, comparing it with the second sce-
nario will help highlight the benefits of the local decorrela-
tion technique.
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Figure 1 Heat map showing the correlations from data based on two different covariance structures. Left: based on an
autoregressive covariance structure AR(1), right: based on a compound symmetry covariance structure. The correlations
along the main diagonal are 1.00 but are not used in computing the mean correlation.

Autoregressive covariance

The population covariance matrix had AR(1) structure
with σ = 15 and ρ = .75. The generated dataset
from these specifications can be found as supplemen-
tary material, file illustrationWithAR1.tsv in the
folder FirstIllustration. With such parameters, the
ANOVA, not surprisingly, shows a very significant effect of
Time, as seen in Table 1. The effect size η2p is large (0.46).

The sample correlations show a decreasing trend with
increasing lag between the measurement times. The heat
map in Figure 1, left panel, shows the correlations for each
pair of measurements. The correlations along the main di-
agonal are 1.00 (correlation of a measurement with itself).
The correlations become weaker as we move further away
from the main diagonal. As the sample is small (25 simu-
lated participants), correlations are rarely zero but end up
fluctuating around this value (in the extreme, correlation
between the first and the last measurement is expected to
be ρ25 = .0008with a large expected 95% confidence inter-
val or [-.395, +.396] as the sample is fairly small).

Figure 2 shows the means along with confidence inter-
vals (CI) adjusted in various ways. The gray error bars de-
note the (unadjusted) standalone 95% confidence intervals.
As argued elsewhere, they are useless for pairwise com-
parisons. They can only be used if the purpose is to com-
pare one measurement to an a priori value. For example,
does the average measurement at time 2 differ from 100
(answer is yes, M = 92.4, t(24) = 2.22, p = .036). The

gray error bar on that measurement just barely excludes
the value 100, explaining why the p value of the difference
is not stronger.

The green error bars show the Cousineau-Morey ad-
justed 95% confidence intervals. It is first adjusted for pair-
wise differences (Baguley, 2012): their widths are

√
2 = 1.41

times longer than the standalone confidence intervals. It
is further adjusted for the average correlation across the
measurements (here the average correlation r̄ is .163). This
is amoderately weak correlation so that the correlation ad-
justment is fairly modest, reducing the error bar widths by
a factor of approximately

√
1− r̄ = .91 (that is, they are

shortened by close to 10%). Taking the two adjustments to-
gether, the error bars are 28% longer than the standalone
error bars (1.41 × 0.91 = 1.28). These error bars would
be adequate if the correlation was stationary across mea-
surements (a CS structure). However, in an AR(1) structure,
they are too long when comparing nearby measurements.

The orange error bars show the locally-decorrelated
95% confidence intervals. Using weighted average with
a radius of 1, the mean correlation rLD is –on average
over the 26 measurements– .729 (ranging from .85 for the
22th measurement to .39 for the 26th measurement). The
locally-decorrelated confidence intervals are the shortest
with a few exceptions.

To illustrate the utility of the locally-decorrelated con-
fidence intervals, some pairs have been highlighted in Fig-
ure 2 (how the p values in the Figure were computed is dis-
cussed later). The measurements 13 and 14 for example
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Figure 2 Plot of themeanmeasurements as a function of time, along with standalone 95% confidence intervals (CI; gray),
Correlation an difference-adjusted 95% CI (green), and locally-decorrelated 95% CI (orange).

can be tested using an a priori contrast (Howell & Lacroix,
2012). Because they are contiguous, correlation between
these two measurements is strong (r13,14 = .697), and
the contrast suggests a significant difference (F (1, 24) =
4.865, p = .037). It could alternatively be tested with
an LSD test with no difference in the conclusion (t(24) =
2.206, p = .037). These formal results are perfectly cor-
roborated by the locally decorrelated confidence interval
as the mean for time point 13 is close but not included in
the interval of time point 14 (and vice-versa).

The most time-separated means, measurements 1 and
26 are not significantly different according to the above
mean comparison tests (with the contrast method, we get
F (1, 24) = 1.58, p = .221). The reason is that their correla-
tion is about null (r1,26 = −.037). The difference-adjusted
confidence interval (the standalone CIwidth times

√
2) cap-

tures this lack of difference well. However, discounting the
effect of lag, we can test the differences using the totalmean
squared error, as suggested next using an adjusted t-test.

A t-test discounting the lag effect

The total mean squared error is a quantity which indicates
the amount of variance that cannot be attributed to the fac-

tor examined (the time effect). In Table 1, the total sum
of squared error (e) and sum of squared within-group er-
ror (S × E) yields 116, 182.0 + 28, 270.1 = 144, 452.1.
When this total is divided by the degrees of freedom of the
error terms, 624, we get a mean squared error of 231.49.
We get the same estimate when we analyze the data using
a between-subject design in which there is a single error
term. It is therefore the total mean squared error. Using
this error term in a test of mean difference, we have

tLD =
|Mi −Mj |√

2
n

√
1− rLD

√
CMe

(4)

where Mi and Mj are the two means to compare, rLD

is the overall mean correlation obtained locally with the
weighted average, and CMe is the error term. Doing so
for the first and the last measurements (M1 = 95.798,
M26 = 100.567, rLD = 729), we obtain t(24) = 2.129,
p = .044. This borderline yet significant result is mirrored
by the orange CI of time 26 which barely exclude time 1
(and vice versa).

The purpose of the term
√
1− rLD

√
CMe is to parti-

tion the error term into a component which is neither at-
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Figure 3 Plot of themeanmeasurements in the same format as Figure 2. The data’s covariance are compound symmetric.

tributed to the lag effect nor to the time effect. It does so
by discounting the proportion of variance which is not ex-
plained by local correlation.

If we examine all the 325 possible pairs of measure-
ments, we find 28 cases where the adjusted t-test reports
a significant mean difference but where the LSD is not sig-
nificant. One such case is the pairs of measurements from
the 13th time and the 26th time. A LSD test reports no sig-
nificant difference (t(24) = 1.312, p = .202); the adjusted
t-test suggests a significant result (t(24) = 2.387, p = .025).
We can see that themeanon the 26thmeasurement is about
identical to the mean on the 14th measurement. Above,
we saw that the 13th and 14th measurements were signifi-
cantly different. The locally decorrelated confidence inter-
vals do suggests that the measurements on the 26th time
point are different on average from the measurements of
the 13th time point.

Compound symmetry covariance

In a second scenario, we generated simulated data
as before except that the covariance matrix at the
level of the population is compound symmetric (the
parameter ρ being set to 0.75). The generated
data are available as supplementary material with

this manuscript, folder FirstIllustration, file
IllustrationWithCS.tsv. Figure 1, right panel
shows a heat map of the correlation matrix and Figure
3 shows the means with various error bars.

The mean pairwise correlation is .756 whereas the
mean weighted correlation is .754. In other words, the
correlations are similar for short lags as they are overall,
clearly indicating thatwe are not in an AR(1) scenario. That
result was hinted by Figure 1, right panel, where the corre-
lations aremildly fluctuating (except along themain diago-
nal). In such a scenario, there should be no benefit of using
a local decorrelation technique over a regular decorrela-
tion technique.

Inspection of the confidence intervals in Figure 3
confirms this: the correlation-adjusted and the locally-
decorrelated 95% confidence intervals are about the same.
Both are about

√
1− r̄ ≈ 50% shorter than the confidence

intervals that are only difference-adjusted (i.e., ignoring
correlation).

As seen, the difference-adjusted intervals are the
longest. They are meant to compare independent groups
which is not the case in the present simulated dataset. The
correlation-adjusted (which could be labeled the globally-
decorrelated intervals) and the locally-decorrelated inter-
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Figure 4 Waskom et al. (2017) data for parietal (lighter curves) and frontal (darker curves) in the “Stimulus” conditions
(top curves) and the “cue” conditions (bottom curves). In the “cue” conditions, the usual confidence intervals suggest no
difference but the LD intervals indicates a difference between the parietal/frontal curves.

vals are about the same. This is expected as the structure
being compound symmetric, correlation is stationary for
any pair of measurements.

The first illustration was composed of a single time se-
ries. Comparisons involve different time points along the
curve. In the subsequent illustration, the technique is ap-
plied to a dataset with distinct curves from the same partic-
ipants. In this setting, the intervals are convenient to com-
pare contiguous points but also different curves at a given
time point.

Illustration with fMRI data fromWaskom et al. (2017)

Waskom et al. (2017) published data from an fMRI
experiment. The data showed the evolution of
the BOLD signal over time in two regions of in-
terest, the parietal and the frontal. The data
are available from the first author’s Git repository
(github.com/mwaskom/Waskom_CerebCortex_2017). It
contains data from 14 participants broken down by region
of interest (Intra-Parietal Sulcus IPS or Inferior Frontal Sul-
cus FPS) and by stimulus condition (Stimulus+Cue or Cue-
alone). The recordings were converted to finite impulse re-
sponses (FIR). In the original article, they report the means
in their Figure 6, the two top left panels. They mentioned
that the error bars were obtained with bootstrap from the
simulation of a multilevel model (Politzer-Ahles, 2017) but
it is not specified if they represent standard errors or con-
fidence intervals.

The mean FIR are shown in Figure 4. The
left panel shows the standalone 95% confidence
intervals. The figure resembles what Python’s

seaborn package produces (Waskom, 2021; see
seaborn.pydata.org/examples/errorband_lineplots.html)
although this package uses bootstrap confidence intervals.

If the reader wants to compare the curves at vari-
ous time points, a correlation-adjusted confidence inter-
val would be preferable. The central panel shows the 95%
correlation-adjusted confidence intervals. There is very lit-
tle difference between the left and the central panels be-
cause correlations are on average close to null (mean cor-
relations of -.01). Yet, the correlation heat maps shown in
Figure 5 indicate that they are not stationary with high
correlations for nearby measurements. The correlations
weighted with a Gaussian whose radius is 1 indicate mean
correlation r̄LD of .765.

Thus, we plotted the means along with locally-
decorrelated 95% confidence intervals (and the difference
adjustment). The intervals are approximately 33% shorter
(multiplied by

√
1− .765× 1.41 ≈ 0.683). In the previous

panels, no hint of differences between the dashed lines are
visible in the first time points (from 0 to 9, all the points
of one curve are included in the confidence interval of the
second curve). The locally-decorrelated confidence inter-
vals however suggest significant differences between the
dashed lines for time points 4 to 7. As an instance, we high-
lighted time point 5 in the figure. A simple paired t-test in-
dicates a significant difference (t(26) = 4.12, p = .001). A
locally-decorrelated t-test (Eq. 4) returns tLD(26) = 2.72,
p = .011. The reason that the paired t-test’s significance
is so strong is that the correlation between these two spe-
cific measurements is quite high (r = .97) whereas the
mean local average correlation using the Gaussian weights
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Figure 5 Heat map showing the correlations in the Waskom et al. (2017) fMRI dataset. Top panels are for the IPS region
of interest and bottom panels are for the FPS region of interest; left panels are for the Stimulus+Cue condition, and right
panels are for the Cue-alone condition.

is .765. Thus, the locally-decorrelated 95% confidence in-
tervals return more adequate depictions of the significant
differences than the (globally) decorrelated and standalone
confidence intervals.

This example is an example of a situation where the
covariance matrix does not have a simple structure. It is
neither CS nor AR(1) with correlations which fluctuate de-
pending on the time points. For example, the falling in FIR
at times 7, 8, 9 and 10 correlates negatively with the rising
in FIR at times 1, 2, 3, and 4. This is seen in Figure 5 by
black areas. The mean correlation over these 16 pairs of
time points is -.323. The technique presented herein is not
dependent on any particular covariance structure; its only
requirement is that correlations close in time (with a small
lag between them) be relevant for your objectives.

A Matlab function that performs local decorrelation

Here, we present the Local_Decorrelation function
implemented in Matlab, which can be found in the supple-

mentarymaterials folder ThirdIllustration. For the demon-
stration, data from Potvin-Pilon (2024) are being used.
These data are composed of EEG signals sampled at a high
rate, so that the time series is long (330 time points). In that
study, we recorded participants’ brain electrophysiological
activity in a Same-Different task where they must indicate
if two strings of consonants of various lengths, presented in
close succession, are identical or not. We recorded events-
related potentials (ERP) across 62 electrodes as we manip-
ulated the length of the strings and the number of dif-
ferences between them. For brevity, only two conditions
(Same and 1 difference for strings composed of a single let-
ter) and only one electrode (PO8) is examined and visual-
ized here (see Potvin-Pilon, 2024, for preliminary analyses).

The variables EEG_SignalSame and EEG_Signal
Diff are 24×330matrices containing data from 24 partic-
ipants, across 330 time points for the two conditions (Same
and 1 difference). The variable timepoints contains the 330
sample moments, ranging from -0.1 to 1.0 second (i. e.,
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there is one time point every 3.33 ms) and is used to la-
bel the horizontal axis. The variable radius represents the
weights’ standard deviation applied to the correlation’ co-
efficients, that is, the radius. A small radius gives more
weight to coefficients of close time points. In the present
data, contiguous measurements are more strongly corre-
lated than distant measurements (average correlations in
the Same and Different conditions r̄ are .293 and .379 re-
spectively; locally-weighted correlations r̄LD are .818 and
.849 using a radius of 5 and .707 and .756 using a radius
of 10). Consequently, using a small radius leads to greater
adjustment and narrower intervals. As the purpose is to
compare the points, an adjustment for pairwise difference
is also requestedwith the argument ‘Adjustment’ set to true
(resulting in intervals being

√
2 wider).

The Matlab lines of code in Listing 1 at the end show
how to utilize the Local_Decorrelation function.
Plots produced from these are shown in Figure 6.

Figure 6, top row, shows the figures obtained with two
different radius values (5 and 10 in the left and right panels
respectively). In comparison, the bottom panel shows the
procedure without the local decorrelation adjustment. As
seen, confidence intervals with locally-decorrelated adjust-
ments are narrower. Considering the elevated amount of
noise in EEG datasets, the locally decorrelated adjustment
may give abetter representation of the differences between
time points and between conditions.

Discussion

We described a method which computes confidence inter-
vals that capitalizes on correlations of nearby measure-
ments. The method, herein called the local decorrelation
technique, is adequate when the correlations across mea-
surements are not stationary (not a compound symmet-
ric covariance structure) but instead becoming less and
less relevant as the lag between measurements increases.
When used in plots, its benefit is to favor comparisons
of nearby points either on the same curve or on adjacent
curves. It can likewise be integrated into a paired t-test
which uses a locally estimated correlation across thewhole
dataset instead of the correlation of the twomeasurements
to be compared.

The degrees of freedom are given in Eq. 3 as n − 1.
This is used for simplicity. However, the pooled degrees
of freedom (p − 1)(n − 1) where p is the number of time
point in the time series is more adequate (Cousineau et al.,
2021; Zitzmann et al., in press). Keep in mind that for non-
negligible sample sizes, the difference is immaterial.

This technique requires a radius parameter. In Figures
2, 3 and 4, a radius of 1 was used as there were relatively
few time points (26, 26 and 19 respectively); in Figure 6,
larger radii of 5 and 10 were used, as there were 330 time

points in the sample. When correlation is influenced by lag,
this choicemakes a difference, and in the extreme, if a very
large radius is used, the weights are nearly uniform and
the locally-decorrelated confidence intervals then becomes
identical to the (global) correlation-adjusted confidence in-
tervals. In the first illustration, when the radius takes the
following values, 1, 2, 5, 10, 100, 1000, the average rLDtake
the values 0.729, 0.624, 0.432, 0.279, 0.164, 0.163, the last be-
ing equal to themean correlation in the correlationmatrix.
At this time, we do not have any motivated rule to provide
on how to set the radius parameter; we suggest as a prelim-
inary rule of thumb to use a radius 20 to 50 times smaller
than the number of time points.

In a nutshell...

Locally-decorrelated confidence intervals are to be
used when nearby time points are expected to be
positively correlated in a significant way and where
distant time points may be uncorrelated because the
passage of time washes away correlation. The tech-
nique performs a smoothing of the standard errors
using a Gaussian kernel. Such confidence intervals
allow comparing nearby time points along a single
curve or located on distinct curves. A t-test is pro-
posed in which the influence of lag is discounted.
When correlation is assumed constant across time
points, prefer correlation-adjusted confidence inter-
vals.

One way to conceptualize this technique is in term of
window averaging. Window averaging is commonly used
in time series to smooth the mean scores by weighting par-
tially the scores of the neighboring time points in the aver-
age of the current score. Herein, we do the same not at the
level of the means, but at the level of the standard errors of
the difference.

An analogy to understand this method is to consider
that longer lags “erase” any dependencies there may be be-
tween measurements. Thus, we partition the error vari-
ance into error deduced fromnearby points and error vari-
ance resulting from this “forgetting” in the relations be-
tween measurements.

In the supplementary material, we provide code to per-
form the plots with three different software, Mathemat-
ica (first illustrations), R (second illustration), and Matlab
(third illustration).
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Figure 6 Plots showing EEG signals with confidence intervals from the Potvin-Pilon (2024) dataset. Top row received
the Local Decorrelation adjustment with different radius values (5 and 10). Bottom row shows the confidence intervals
without Local Decorrelation adjustment.
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Listing 1 Matlab code to perform the plot of Figure 6

% the time points on the x axis
timepoints = round([1:330]*10/3-100);

% read the two data files , one for Same, one for Different , when the total number of letter is 1
EEG_SignalSame = table2array(readtable("EEG_nTotal1_Same.tsv",'FileType','text'));
EEG_SignalDiff = table2array(readtable("EEG_nTotal1_Diff.tsv",'FileType','text'));

% desired radius
radius = 5;

% Calculate CI and mean for Same condition
[CI_same,mean_same] = Local_Decorrelation(EEG_SignalSame, radius, 'Adjustment',true

);

% Calculate CI and mean for 1=difference condition
[CI_diff,mean_diff] = Local_Decorrelation(EEG_SignalDiff, radius, 'Adjustment',true

);

% Only for filling between CI
fillX = [timepoints,fliplr(timepoints)];
fillY_same = [CI_same(1,:),fliplr(CI_same(2,:))];
fillY_diff = [CI_diff(1,:),fliplr(CI_diff(2,:))];

% Put a dashed line at 0
figure(1); hold on
plot(timepoints,zeros(1,length(timepoints)),'--black','HandleVisibility','off');

% Plot the Same condition
plot(timepoints,CI_same,'-b','LineWidth',0.5,'HandleVisibility','off'); % Plot the CI
plot(timepoints,mean_same,'-b','LineWidth',1.5,'HandleVisibility','on'); % Plot the

mean
fill(fillX,fillY_same,'-b','FaceAlpha',0.05,'EdgeColor','none','HandleVisibility','

off'); % Fill the space

% Plot the 1=difference condition
plot(timepoints,CI_diff,'-r','LineWidth',0.5,'HandleVisibility','off'); % Plot the CI
plot(timepoints,mean_diff,'-r','LineWidth',1.5,'HandleVisibility','on'); % Plot the

mean
fill(fillX,fillY_diff,'-r','FaceAlpha',0.05,'EdgeColor','none','HandleVisibility','

off'); % Fill the space

% From here, it is only for visualization preference
axis([timepoints(1) timepoints(end) -5.0 6.5]); % Adjust axis
xticks(timepoints(1):0.2:timepoints(end)); xticklabels(timepoints(1)*1000:200:

timepoints(end)*1000);
box off; set(gcf,'color','w'); % Remove the box and make the background white
legend({'Same';'1 difference'},'box','off'); % Put the legend
xlabel('Time (ms)'); ylabel('EEG activity (µV)'); % Name axis labels
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